Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals

被引:4
|
作者
Hannula, Miika [1 ]
Virtema, Jonni [2 ,3 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Leibniz Univ Hannover, Inst Theoret Informat, Hannover, Germany
[3] Univ Sheffield, Dept Comp Sci, Sheffield, England
基金
芬兰科学院;
关键词
Dependence logic; Team semantics; Metafinite structures; Blum-Shub-Smale machine; COMPLEXITY CLASSES; DEPENDENCIES; INCLUSION;
D O I
10.1016/j.apal.2022.103108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Probabilistic team semantics is a framework for logical analysis of probabilistic dependencies. Our focus is on the axiomatizability, complexity, and expressivity of probabilistic inclusion logic and its extensions. We identify a natural fragment of existential second-order logic with additive real arithmetic that captures exactly the expressivity of probabilistic inclusion logic. We furthermore relate these formalisms to linear programming, and doing so obtain PTIME data complexity for the logics. Moreover, on finite structures, we show that the full existential second-order logic with additive real arithmetic can only express NP properties. Lastly, we present a sound and complete axiomatization for probabilistic inclusion logic at the atomic level.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Existential second-order logic over graphs: Charting the tractability frontier
    Gottlob, G
    Kolaitis, PG
    Schwentick, T
    JOURNAL OF THE ACM, 2004, 51 (02) : 312 - 362
  • [2] Existential second-order logic over graphs: Charting the tractability frontier
    Gottlob, G
    Kolaitis, PG
    Schwentick, T
    41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 664 - 674
  • [3] ON THE UNION CLOSED FRAGMENT OF EXISTENTIAL SECOND-ORDER LOGIC AND LOGICS WITH TEAM SEMANTICS
    Hoelzel M.
    Wilke R.
    Logical Methods in Computer Science, 2021, 17 (03): : 14:1 - 14:32
  • [4] Second-order logic: properties, semantics, and existential commitments
    Bob Hale
    Synthese, 2019, 196 : 2643 - 2669
  • [5] Second-order logic: properties, semantics, and existential commitments
    Hale, Bob
    SYNTHESE, 2019, 196 (07) : 2643 - 2669
  • [6] Existential second-order logic over strings
    Eiter, T
    Gottlob, G
    Gurevich, Y
    THIRTEENTH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1998, : 16 - 27
  • [7] Existential second-order logic over strings
    Eiter, T
    Gottlob, G
    Gurevich, Y
    JOURNAL OF THE ACM, 2000, 47 (01) : 77 - 131
  • [8] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    FUNDAMENTA INFORMATICAE, 2011, 106 (2-4) : 259 - 272
  • [9] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2009, 5514 : 230 - 241
  • [10] One quantifier will do in existential monadic second-order logic over pictures
    Matz, O
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1998, 1998, 1450 : 751 - 759