Primitive root;
explicit upper bound;
character sums;
Cauchy-Schwarz inequality;
PRIME;
D O I:
10.1142/S1793042122500233
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we give an explicit upper bound on h(p), the least primitive root modulo p(2). Since a primitive root modulo p is not primitive modulo p(2) if and only if it belongs to the set of integers less than p which are pth power residues modulo p(2), we seek the bounds for N-1(H) and N-2(H) to find H which satisfies N-1(H) - N-2(H) > 0, where, Ni(H) denotes the number of primitive roots modulo p not exceeding H, and N-2(H) denotes the number of pth powers modulo p(2) not exceeding H. The method we mainly use is to estimate the character sums contained in the expressions of the N-1(H) and N-2(H) above. Finally, we show that h(p) < P-0.74 for all primes p. This improves the recent result of Kerr et al.
机构:
Univ New South Wales, Sch Sci, Canberra, ACT, AustraliaUniv New South Wales, Sch Sci, Canberra, ACT, Australia
Kerr, Bryce
McGown, Kevin J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Sci, Canberra, ACT, Australia
Calif State Univ Chico, Dept Math & Stat, Chico, CA 95929 USAUniv New South Wales, Sch Sci, Canberra, ACT, Australia
McGown, Kevin J.
Trudgian, Tim
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Sci, Canberra, ACT, AustraliaUniv New South Wales, Sch Sci, Canberra, ACT, Australia
机构:
Calif State Univ Chico, Dept Math & Stat, Chico, CA 95929 USA
Univ New South Wales, Sch Sci, POB 7916, Canberra, ACT 2610, AustraliaCalif State Univ Chico, Dept Math & Stat, Chico, CA 95929 USA
McGown, Kevin J.
Trudgian, Tim
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Sci, POB 7916, Canberra, ACT 2610, AustraliaCalif State Univ Chico, Dept Math & Stat, Chico, CA 95929 USA