Non-Hermitian dislocation modes: Stability and melting across exceptional points

被引:19
|
作者
Panigrahi, Archisman [1 ]
Moessner, Roderich [2 ]
Roy, Bitan [3 ]
机构
[1] Indian Inst Sci, Bangalore 560012, Karnataka, India
[2] Max Planck Inst Phys Komplexer Systeme, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA
关键词
Topology;
D O I
10.1103/PhysRevB.106.L041302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The traditional bulk-boundary correspondence assuring robust gapless modes at the edges and surfaces of insulating and nodal topological materials gets masked in non-Hermitian (NH) systems by the skin effect, manifesting an accumulation of a macroscopic number of states near such interfaces. Here we show that dislocation lattice defects are immune to such skin effect or at most display a weak skin effect (depending on its relative orientation with the Burgers vector), and as such they support robust topological modes in the bulk of a NH system, specifically when the parent Hermitian phase features band inversion at a finite momentum. However, the dislocation modes gradually lose their support at their core when the system approaches an exceptional point, and finally melt into the boundary of the system across the NH band gap closing. We explicitly demonstrate these findings for a two-dimensional NH Chern insulator, thereby establishing that dislocation lattice defects can be instrumental to experimentally probe pristine NH topology.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Exceptional Points and Skin Modes in Non-Hermitian Metabeams
    Cai, Runcheng
    Jin, Yabin
    Li, Yong
    Rabczuk, Timon
    Pennec, Yan
    Djafari-Rouhani, Bahram
    Zhuang, Xiaoying
    PHYSICAL REVIEW APPLIED, 2022, 18 (01)
  • [2] Exceptional points of non-Hermitian operators
    Heiss, WD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2455 - 2464
  • [3] Exceptional points in a non-Hermitian topological pump
    Hu, Wenchao
    Wang, Hailong
    Shum, Perry Ping
    Chong, Y. D.
    PHYSICAL REVIEW B, 2017, 95 (18)
  • [4] Non-Hermitian Electromagnetic Metasurfaces at Exceptional Points
    Li, Zhipeng
    Cao, Guangtao
    Li, Chenhui
    Dong, Shaohua
    Deng, Yan
    Liu, Xinke
    Ho, John S.
    Qiu, Cheng-Wei
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2021, 171 : 1 - 20
  • [5] Exceptional points and non-Hermitian photonics at the nanoscale
    Li, Aodong
    Wei, Heng
    Cotrufo, Michele
    Chen, Weijin
    Mann, Sander
    Ni, Xiang
    Xu, Bingcong
    Chen, Jianfeng
    Wang, Jian
    Fan, Shanhui
    Qiu, Cheng-Wei
    Alu, Andrea
    Chen, Lin
    NATURE NANOTECHNOLOGY, 2023, 18 (07) : 706 - 720
  • [6] Exceptional points and non-Hermitian photonics at the nanoscale
    Aodong Li
    Heng Wei
    Michele Cotrufo
    Weijin Chen
    Sander Mann
    Xiang Ni
    Bingcong Xu
    Jianfeng Chen
    Jian Wang
    Shanhui Fan
    Cheng-Wei Qiu
    Andrea Alù
    Lin Chen
    Nature Nanotechnology, 2023, 18 : 706 - 720
  • [7] Non-Hermitian Sensing in the Absence of Exceptional Points
    Xiao, Lei
    Chu, Yaoming
    Lin, Quan
    Lin, Haiqing
    Yi, Wei
    Cai, Jianming
    Xue, Peng
    Physical Review Letters, 2024, 133 (18)
  • [8] Exceptional points for crack detection in non-Hermitian beams
    Jin, Yabin
    Li, Wenjun
    Djafari-Rouhani, Bahram
    Li, Yan
    Xiang, Yanxun
    JOURNAL OF SOUND AND VIBRATION, 2024, 572
  • [9] Hunting for the non-Hermitian exceptional points with fidelity susceptibility
    Tzeng, Yu-Chin
    Ju, Chia-Yi
    Chen, Guang-Yin
    Huang, Wen-Min
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [10] Extended exceptional points in projected non-Hermitian systems
    Wang, Xiao-Ran
    Yang, Fei
    Tong, Xian-Qi
    Yu, Xiao-Jie
    Cao, Kui
    Kou, Su-Peng
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):