Real-time queues in heavy traffic with earliest-deadline-first queue discipline

被引:3
|
作者
Doytchinov, B
Lehoczky, J
Shreve, S
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
来源
ANNALS OF APPLIED PROBABILITY | 2001年 / 11卷 / 02期
关键词
due dates; heavy traffic; queueing; diffusion limits; random measures;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new aspect of queueing theory, the study of systems that service customers with specific timing requirements (e.g., due dates or deadlines). Unlike standard queueing theory in which common performance measures are customer delay, queue length and server utilization, real-time queueing theory focuses on the ability of a queue discipline to meet customer timing requirements, for example, the fraction of customers who meet their requirements and the distribution of customer lateness. It also focuses on queue control policies to reduce or minimize lateness, although these control aspects are not explicitly addressed in this paper. To study these measures, we must keep track of the lead times (deadline minus current time) of each customer; hence, the system state is of unbounded dimension. A heavy traffic analysis is presented for the earliest-deadline-first scheduling policy. This analysis decomposes the behavior of the real-time queue into two parts: the number in the system (which converges weakly to a reflected Brownian motion with drift) and the set of lead times given the queue length. The lead-time profile has a limit that is a nonrandom function of the limit of the scaled queue length process. Hence, in heavy traffic, the system can be characterized as a diffusion evolving on a one-dimensional manifold of lead-time profiles. Simulation results are presented that indicate that this characterization is surprisingly accurate. A discussion of open research questions is also presented.
引用
收藏
页码:332 / 378
页数:47
相关论文
共 50 条
  • [1] Earliest-deadline-first service in heavy-traffic acyclic networks
    Kruk, L
    Lehoczky, J
    Shreve, S
    Yeung, SN
    [J]. ANNALS OF APPLIED PROBABILITY, 2004, 14 (03): : 1306 - 1352
  • [2] Accuracy of state space collapse for earliest-deadline-first queues
    Kruk, Lukasz
    Lehoczky, John
    Shreve, Steven
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (02): : 516 - 561
  • [3] Earliest-deadline-first scheduling on nonpreemptive real-time threads for a continuous media server
    Sohn, JM
    Kim, GY
    [J]. HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1997, 1225 : 950 - 956
  • [4] Scheduling mixed traffic under Earliest-Deadline-First algorithm
    Ryu, YS
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 715 - 722
  • [5] Fluid Limits of G/G/1+G Queues Under the Nonpreemptive Earliest-Deadline-First Discipline
    Atar, Rami
    Biswas, Anup
    Kaspi, Haya
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2015, 40 (03) : 683 - 702
  • [6] Design of an Efficient Ready Queue for Earliest-Deadline-First (EDF) Scheduler
    Pathan, Risat Mahmud
    [J]. PROCEEDINGS OF THE 2016 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2016, : 293 - 296
  • [7] Law of large numbers for the many-server earliest-deadline-first queue
    Atar, Rami
    Biswas, Anup
    Kaspi, Haya
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (07) : 2270 - 2296
  • [8] Earliest Deadline First scheduling with active buffer management for real-time traffic in the Internet
    Hei, XJ
    Tsang, DHK
    [J]. TELECOMMUNICATION SYSTEMS, 2002, 19 (3-4) : 349 - 359
  • [9] The Earliest Deadline First scheduling with active buffer management for real-time traffic in the Internet
    Hei, XJ
    Tsang, DHK
    [J]. NETWORKING - ICN 2001, PT I, PROCEEDINGS, 2001, 2093 : 45 - 54
  • [10] Earliest Deadline First Scheduling with Active Buffer Management for Real-Time Traffic in the Internet
    Xiaojun Hei
    Danny H.K. Tsang
    [J]. Telecommunication Systems, 2002, 19 : 349 - 359