On a common generalization of Shelah's 2-rank, dp-rank, and o-minimal dimension

被引:6
|
作者
Guingona, Vincent [1 ]
Hill, Cameron Donnay [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
关键词
op-dimension; op-rank; dp-rank; 2-rank; o-minimal; NIP THEORIES;
D O I
10.1016/j.apal.2014.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we build a dimension theory related to Shelah's 2-rank, dp-rank, and o-minimal dimension. We call this dimension op-dimension. We exhibit the notion of the n-multi-order property, generalizing the order property, and use this to create op-rank, which generalizes 2-rank. From this we build op-dimension. We show that op-dimension bounds dp-rank, that op-dimension is sub-additive, and op-dimension generalizes o-minimal dimension in o-minimal theories. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:502 / 525
页数:24
相关论文
共 17 条