Analysis of a simple solid oxide fuel cell system with gas dynamic in afterburner and connecting pipes

被引:6
|
作者
Chan, SH [1 ]
Ho, HK [1 ]
Ding, OL [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Prod Engn, Fuel Cell Strateg Res Programme, Singapore 639798, Singapore
关键词
exergy; first law; second law; solid oxide fuel; cell stack; system modelling;
D O I
10.1002/fuce.200400047
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A simple solid oxide fuel cell plant is analysed based on the first law of thermodynamics approach. This system consists of a solid oxide fuel cell stack, a steam reformer, a mixer, a vaporiser, an afterburner, and two pre-heaters. To simplify the study, the enthalpy at each node of the system is normalized with the lower heating value of the inlet fuel. A gas dynamic model for calculating the flow in the pipes connecting the system components is considered and can be used to estimate the flow velocity and friction-induced pressure drop in the piping. Though the effect of a friction-induced pressure drop can be significant in a sizeable integrated,p solid oxide fuel cell-gas turbine power plant, it does not significantly, affect the plant efficiency in this study, due to rather short piping used in this simple power system. A steady flow energy equation and the Rayleigh line flow assumption are applied to the afterburner to calculate the exit flow temperature, velocity and pressure.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 50 条
  • [1] Numerical analysis of afterburner chamber design for solid oxide fuel cell system
    Feng, Tzu-Hsuan
    Chen, Cha'o-Kuang
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2021, 80 (07) : 337 - 355
  • [2] Dynamic modeling of a hybrid system of the solid oxide fuel cell and recuperative gas turbine
    Zhang, Xiongwen
    Li, Jun
    Li, Guojun
    Feng, Zhenping
    JOURNAL OF POWER SOURCES, 2006, 163 (01) : 523 - 531
  • [3] Afterburner temperature safety assessment for solid oxide fuel cell system based on computational fluid dynamics
    Wu, Xiao-long
    Xu, Yuan-wu
    Li, Dong
    Zheng, Yi
    Li, Jiarui
    Sorrentino, Marco
    Yu, Yunjun
    Wan, Xiaofeng
    Hu, Lingyan
    Zou, Chun
    Li, Xi
    JOURNAL OF POWER SOURCES, 2021, 496
  • [4] DYNAMIC MODELING OF A SOLID OXIDE FUEL CELL SYSTEM IN MODELICA
    Andersson, Daniel
    Aberg, Erik
    Yuan, Jinliang
    Sunden, Bengt
    Eborn, Jonas
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 2, 2010, : 65 - 72
  • [5] Dynamic Modeling and Simulation of Solid Oxide Fuel Cell System
    Salam, A. A.
    Hannan, M. A.
    Mohamed, A.
    2008 IEEE 2ND INTERNATIONAL POWER AND ENERGY CONFERENCE: PECON, VOLS 1-3, 2008, : 813 - 818
  • [6] Control Oriented Analysis of a Hybrid Solid Oxide Fuel Cell and Gas Turbine System
    Tsourapas, Vasilis
    Sun, Jing
    Stefanopoulou, Anna
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (04): : 0410081 - 04100811
  • [7] System analysis of solid oxide fuel cell unit
    Chen, TP
    Wright, JD
    Krist, K
    PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON SOLID OXIDE FUEL CELLS (SOFC-V), 1997, 97 (40): : 69 - 78
  • [8] Dynamic simulation and analysis of a Solid Oxide Fuel Cell (SOFC)
    Bhattacharyya, Debangsu
    Rengasamy, Raghunathan
    Caine, Finnerty
    17TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2007, 24 : 907 - 912
  • [9] Performance analysis of a solid oxide fuel cell with reformed natural gas fuel
    Jafarian, S. M.
    Haseli, P.
    Karimi, G.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (11) : 946 - 961
  • [10] Experimental study of a solid oxide fuel cell afterburner for a 30 kW generator module: A comparative performance analysis
    Sun, Chunhua
    Wang, Lintao
    Zhou, Yaodong
    Wang, Shuheng
    Li, Hailiang
    Liu, Yechang
    Shi, Wangquan
    JOURNAL OF POWER SOURCES, 2024, 607