Ground state solution for the Schrodinger equation with Hardy potential and critical Sobolev exponent

被引:0
|
作者
Zhang, Jing [1 ]
Li, Lin [2 ,3 ]
机构
[1] Inner Mongolia Normal Univ, Math Sci Coll, Hohhot 010022, Peoples R China
[2] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[3] Chongqing Technol & Business Univ, Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Schrodinger equation; generalized Nehari manifold; asymptotically periodic; SIGN-CHANGING SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE;
D O I
10.3233/ASY-211737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schrodinger equation {-Delta u - mu u/vertical bar x vertical bar(2) + V(x)u = K(x)vertical bar u vertical bar(2)*(-2)u + f(x, u), x is an element of R-N, u is an element of H-1 (R-N), where N >= 4, 0 <= mu < <(mu)over bar>, (mu) over bar = (N-2)(2)/4, V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).
引用
收藏
页码:485 / 503
页数:19
相关论文
共 50 条