Hidden symmetries of deformed oscillators

被引:1
|
作者
Krivonos, Sergey [1 ]
Lechtenfeld, Olaf [2 ,3 ]
Sorin, Alexander [1 ,4 ,5 ]
机构
[1] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany
[4] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Kashirskoe Shosse 31, Moscow 115409, Russia
[5] Dubna Int Univ, Dubna 141980, Russia
关键词
D O I
10.1016/j.nuclphysb.2017.09.003
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We associate with each simple Lie algebra a system of second-order differential equations invariant under a non-compact real form of the corresponding Lie group. In the limit of a contraction to a Schrodinger algebra, these equations reduce to a system of ordinary harmonic oscillators. We provide two clarifying examples of such deformed oscillators: one system invariant under SO(2, 3) transformations, and another system featuring G(2(2)) symmetry. The construction of invariant actions requires adding semi-dynamical degrees of freedom; we illustrate the algorithm with the two examples mentioned. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [1] Hidden symmetries in deformed microwave resonators
    Samuel, Joseph
    Dhar, Abhishek
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (04): : 441021 - 441022
  • [2] Hidden symmetries in deformed microwave resonators
    Samuel, J
    Dhar, A
    PHYSICAL REVIEW A, 2002, 66 (04): : 2
  • [3] Hidden symmetries of rationally deformed superconformal mechanics
    Inzunza, Luis
    Plyushchay, Mikhail S.
    PHYSICAL REVIEW D, 2019, 99 (02):
  • [4] Hidden symmetries in deformed very special relativity
    Dimakis, N.
    PHYSICAL REVIEW D, 2021, 103 (07)
  • [5] Hidden and Not So Hidden Symmetries
    Leach, P. G. L.
    Govinder, K. S.
    Andriopoulos, K.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [6] Deformed discrete symmetries
    Arzano, Michele
    Kowalski-Glikman, Jerzy
    PHYSICS LETTERS B, 2016, 760 : 69 - 73
  • [7] General deformed oscillators
    Pan, F
    Dai, LR
    CHINESE PHYSICS LETTERS, 1997, 14 (01) : 5 - 8
  • [8] Deformed supersymmetric oscillators
    S. Meljanac
    M. Mileković
    A. Perica
    International Journal of Theoretical Physics, 1997, 36 : 11 - 21
  • [9] Deformed supersymmetric oscillators
    Meljanac, S
    Milekovic, M
    Perica, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (01) : 11 - 21
  • [10] Deformed Supersymmetric Oscillators
    Meljanac, S.
    Milekovic, M.
    Perica, A.
    International Journal of Theoretical Physics, 36 (01):