Planar Kolmogorov Systems with Infinitely Many Singular Points at Infinity

被引:0
|
作者
Diz-Pita, Erika [1 ]
Llibre, Jaume [2 ]
Victoria Otero-Espinar, M. [1 ]
机构
[1] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
来源
基金
欧盟地平线“2020”;
关键词
Kolmogorov system; Lotka-Volterra system; phase portrait; Poincare disc; LOTKA-VOLTERRA SYSTEM; GLOBAL DYNAMICS;
D O I
10.1142/S0218127422500651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the global dynamics of the five-parameter family of planar Kolmogorov systems (y)over dot = y(b(0) + b(1yz) + b(2y) + b(3z)), (z)over dot = z(c(0) + b(1yz) + b(2y) + b(3z)), which is obtained from the Lotka-Volterra systems of dimension three. These systems have infinitely many singular points at inifnity. We give the topological classification of their phase portraits in the Poincare disc, so we can describe the dynamics of these systems near infinity. We prove that these systems have 13 topologically distinct global phase portraits.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Phase portraits of a family of Kolmogorov systems with infinitely many singular points at infinity
    Diz-Pita, Erika
    Llibre, Jaume
    Otero-Espinar, M. Victoria
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [2] SINGULAR HYPERSURFACES POSSESSING INFINITELY MANY STAR POINTS
    Cools, Filip
    Coppens, Marc
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) : 3413 - 3422
  • [3] Singular plane curves with infinitely many Galois points
    Fukasawa, Satoru
    Hasegawa, Takehiro
    JOURNAL OF ALGEBRA, 2010, 323 (01) : 10 - 13
  • [4] LINEAR DIFFERENTIAL SYSTEMS WITH INFINITELY MANY BOUNDARY POINTS
    GREEN, GB
    KRALL, AM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 162 - &
  • [5] INFINITELY MANY VERSIONS OF SU(INFINITY)
    HOPPE, J
    SCHALLER, P
    PHYSICS LETTERS B, 1990, 237 (3-4) : 407 - 410
  • [6] Infinitely many turning points for an elliptic problem with a singular non-linearity
    Guo, Zongming
    Wei, Juncheng
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 : 21 - 35
  • [7] Infinitely many singular radial solutions for quasilinear elliptic systems
    Iskafi, Khalid
    Ahammou, Abdelaziz
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (03)
  • [8] SINGULAR POINTS OF PLANAR ORDINARY DIFFERENTIAL SYSTEMS
    AGGARWAL, JK
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1967, 3 (02) : 203 - &
  • [9] Theory of infinitely near singular points
    Hironaka, H
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2003, 40 (05) : 901 - 920
  • [10] COMPUTATION OF STABILITY REGIONS FOR SYSTEMS WITH MANY SINGULAR POINTS
    NOLUDS, E
    GALLE, A
    JOSSON, L
    INTERNATIONAL JOURNAL OF CONTROL, 1973, 17 (03) : 641 - 652