Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis

被引:66
|
作者
Altaf, Sikandar [1 ]
Zafar, Rabeea [1 ,2 ]
Zaman, Waqas Qamar [1 ]
Ahmad, Shakil [1 ]
Yaqoob, Khurram [3 ]
Syed, Asad [4 ]
Khan, Asim Jahangir [5 ]
Bilal, Muhammad [6 ]
Arshad, Muhammad [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Civil & Environm Engn, Islamabad 44000, Pakistan
[2] Allama Iqbal Open Univ, Fac Sci, Dept Environm Design Hlth & Nutr Sci, Islamabad 44000, Pakistan
[3] Natl Univ Sci & Technol, Sch Chem & Mat Engn, Islamabad 44000, Pakistan
[4] King Saud Univ, Coll Sci, Dept Bot & Microbiol, PO 2455, Riyadh 11451, Saudi Arabia
[5] Univ Kassel, Dept Geohydraul & Engn Hydrol, D-34125 Kassel, Germany
[6] COMSATS Univ Islamabad, Dept Environm Sci, Abbottabad Campus, Abbottabad 22060, Pakistan
关键词
Green synthesis; Magnetite; Levofloxacin; Moringa olifera; Kinetics; Isotherm; PHOSPHATE ADSORPTION; OXIDE NANOPARTICLES; COMMERCIAL SORBENTS; ACTIVATED CARBON; WATER; EQUILIBRIUM; ZINC; THERMODYNAMICS; ANTIBIOTICS; COMPOSITE;
D O I
10.1016/j.ecoenv.2021.112826
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 - gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 degrees C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R-2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R-2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Removal of As(V) from aqueous solution using modified Fe3O4 nanoparticles
    Zhao, Yuling
    Shi, Hao
    Du, Ze
    Zhou, Jinlong
    Yang, Fangyuan
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (01):
  • [2] Adsorption studies of amine-modified green synthesized Fe3O4 nanoparticles for the removal of nickel from aqueous solution
    Gopika, G.
    Nithya, K.
    Sathish, Asha
    DESALINATION AND WATER TREATMENT, 2018, 121 : 53 - 64
  • [3] GREEN SYNTHESIZED Fe3O4 NANOPARTICLES FOR LANASYN RED AZO DYE REMOVAL FROM AQUEOUS SOLUTIONS
    Lung, Ildiko
    Soran, Maria-Loredana
    Stan, Manuela
    Opris, Ocsana
    Copaciu, Florina
    Stefan, Maria
    Lazar, Mihaela Diana
    Leostean, Cristian
    Porav, Alin Sebastian
    REVUE ROUMAINE DE CHIMIE, 2018, 63 (10) : 965 - 970
  • [4] Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract
    Sari, I. P.
    Yulizar, Y.
    2ND INTERNATIONAL CONFERENCE ON MINING, MATERIAL AND METALLURGICAL ENGINEERING, 2017, 191
  • [5] Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal
    Iconaru, Simona Liliana
    Guegan, Regis
    Popa, Cristina Liana
    Motelica-Heino, Mikael
    Ciobanu, Carmen Steluta
    Predoi, Daniela
    APPLIED CLAY SCIENCE, 2016, 134 : 128 - 135
  • [6] Effect of green synthesis of Fe3O4 nanomaterial on the removal of cefixime from aqueous solution
    Al-husseiny, Rasha A.
    Kareem, Sabreen L.
    Naje, Ahmed Samir
    Ebrahim, Shahlaa E.
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (15) : 17277 - 17288
  • [7] Heavy Metal Removal from Aqueous Solution by Functional Magnetic Fe3O4 Nanoparticles
    Tan Lisha
    Sun Mingyang
    Hu Yunjun
    Cheng Lihua
    Xu Xinhua
    PROGRESS IN CHEMISTRY, 2013, 25 (12) : 2147 - 2158
  • [8] Removal of antibiotics from aqueous solution by using magnetic Fe3O4/red mud-nanoparticles
    Aydin, Senar
    Aydin, Mehmet Emin
    Beduk, Fatma
    Ulvi, Arzu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 670 : 539 - 546
  • [9] Efficient removal of antimony from aqueous solution using Al-doped Fe3O4 nanoparticles: adsorption behavior and kinetics study
    Zhou, Guoqiang
    Zhang, Yan
    Xia, Jianming
    Zheng, Zhirong
    Wang, Shangjun
    SEPARATION SCIENCE AND TECHNOLOGY, 2023, 58 (11) : 1908 - 1922
  • [10] Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: Synthesis, characterization, mechanism, kinetics and regeneration
    Lou, Zhichao
    Zhou, Zhiwei
    Zhang, Wei
    Zhang, Xiaohong
    Hu, Xiaodan
    Liu, Peidang
    Zhang, Haiqian
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2015, 49 : 199 - 205