Nanoparticle Design Optimization for Enhanced Targeting: Monte Carlo Simulations

被引:68
|
作者
Wang, Shihu [1 ]
Dormidontova, Elena E. [1 ]
机构
[1] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
LIGAND-RECEPTOR INTERACTIONS; BLOCK-COPOLYMER MICELLES; DRUG-DELIVERY; CANCER; SYSTEMS; SURFACES; THERAPY; BINDING; CELLS; INTERNALIZATION;
D O I
10.1021/bm100248e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using computer simulations, we systematically studied the influence of different design parameters of a spherical nanoparticle tethered with monovalent ligands on its efficiency of targeting planar cell surfaces containing mobile receptors. We investigate how the nanoparticle affinity can be affected by changing the binding energy, the percent of functionalization by ligands, tether length, grafting density, and nanoparticle core size. In general, using a longer tether length or increasing the number of tethered chains without increasing the number of ligands increases the conformational penalty for tether stretching/compression near the cell surface and leads to a decrease in targeting efficiency. At the same time, using longer tethers or a larger core size allows ligands to interact with receptors over a larger cell surface area, which can enhance the nanoparticle affinity toward the cell surface. We also discuss the selectivity of nanoparticle targeting of cells with a high receptor density. Based on the obtained results, we provide recommendations for improving the nanoparticle binding affinity and selectivity, which can guide future nanoparticle development for diagnostic and therapeutic purposes.
引用
收藏
页码:1785 / 1795
页数:11
相关论文
共 50 条
  • [1] Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
    Paro, Autumn D.
    Hossain, Mainul
    Webster, Thomas J.
    Su, Ming
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2016, 11 : 4735 - 4741
  • [2] On the optimization of Monte-Carlo simulations
    Kalda, J
    PHYSICA A, 1997, 246 (3-4): : 646 - 658
  • [3] OPTIMIZATION OF MONTE-CARLO SIMULATIONS
    HEUER, HO
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1992, 182 (04) : 649 - 671
  • [4] ON OPTIMIZATION OF MONTE-CARLO SIMULATIONS
    KOLAFA, J
    MOLECULAR PHYSICS, 1988, 63 (04) : 559 - 579
  • [5] Monte Carlo simulations of direct DNA damage on gold nanoparticle enhanced proton therapy
    Sotiropoulos, M.
    Henthorn, N. T.
    Warmenhoven, J. W.
    Mackay, R. I.
    Kirkby, K. J.
    Merchant, M. J.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1086 - S1086
  • [6] A study of nanoparticle aerosol charging by Monte Carlo simulations
    Maisels, A
    Jordan, F
    Kruis, FE
    Fissan, H
    JOURNAL OF NANOPARTICLE RESEARCH, 2003, 5 (3-4) : 225 - 235
  • [7] A Study of Nanoparticle Aerosol Charging by Monte Carlo Simulations
    Arkadi Maisels
    Frank Jordan
    Frank Einar Kruis
    Heinz Fissan
    Journal of Nanoparticle Research, 2003, 5 : 225 - 235
  • [8] Charged polymer/nanoparticle mixtures: Monte Carlo simulations
    Laguecir, A
    Brynda, M
    Stoll, S
    CHIMIA, 2002, 56 (12) : 702 - 706
  • [9] Information theory and the optimization of Monte Carlo simulations
    Eleftheriou, M
    Kim, D
    Doll, JD
    Freeman, DL
    CHEMICAL PHYSICS LETTERS, 1997, 276 (5-6) : 353 - 360
  • [10] Monte Carlo simulations of amphiphilic nanoparticle self-assembly
    Davis, Jonathan R.
    Panagiotopoulos, Athanassios Z.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (19):