DeepForge for astronomy: Deep learning SDSS redshifts from images

被引:2
|
作者
Timalsina, U. [1 ]
Broll, B. [1 ]
Moore, K. [1 ]
Budavari, T. [2 ]
Ledeczi, A. [1 ]
机构
[1] Vanderbilt Univ, Nashville, TN 37235 USA
[2] Johns Hopkins Univ, Baltimore, MD USA
基金
美国国家科学基金会;
关键词
Deep learning; Redshift estimation; Model integrated computing; ESTIMATING PHOTOMETRIC REDSHIFTS; DIGITAL SKY SURVEY; GALAXIES;
D O I
10.1016/j.ascom.2022.100601
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Dedicated survey telescopes provide multicolor imaging observations every night, whose scientific impact hinges on the subsequent data analysis. Deep learning has recently provided breakthroughs in many areas of astronomy due to its ability to extract optimal features from the input data during training. Photometric redshift estimation in particular seems like a perfect application. Directly analyzing the images instead of traditional summary catalogs holds the promise of naturally combining spectral and morphological information. Here we introduce a complete solution called DeepForge for creating, training, and running deep networks for astronomical analyses using a convenient web portal and Python. Following the approach by Pasquet et al. (2019) we demonstrate unprecedented accuracy on the Sloan Digital Sky Survey measurements. We study variants of their network and analyze the optimal feature space using low-dimensional embedding, which clearly reveal the power of the custom features. With DeepForge the process of experimentation is straightforward and has the potential to further improve the current state of the art in photometric redshift estimation.(c) 2022 Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Photometric redshifts from SDSS images with an interpretable deep capsule network
    Dey, Biprateep
    Andrews, Brett H.
    Newman, Jeffrey A.
    Mao, Yao-Yuan
    Rau, Markus Michael
    Zhou, Rongpu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (04) : 5285 - 5305
  • [2] Photometric redshifts from SDSS images using a convolutional neural network
    Pasquet, Johanna
    Bertin, E.
    Treyer, M.
    Arnouts, S.
    Fouchez, D.
    ASTRONOMY & ASTROPHYSICS, 2018, 621
  • [3] Stacking for machine learning redshifts applied to SDSS galaxies
    Zitlau, Roman
    Hoyle, Ben
    Paech, Kerstin
    Weller, Jochen
    Rau, Markus Michael
    Seitz, Stella
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (03) : 3152 - 3162
  • [4] Anomaly detection for machine learning redshifts applied to SDSS galaxies
    Hoyle, Ben
    Rau, Markus Michael
    Paech, Kerstin
    Bonnett, Christopher
    Seitz, Stella
    Weller, Jochen
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (04) : 4183 - 4194
  • [5] Search for hot subdwarf stars from SDSS images using a deep learning method: SwinBayesNet
    Wu, Huili
    Bu, Yude
    Zhang, Jiangchuan
    Zhang, Mengmeng
    Yi, Zhenping
    Liu, Meng
    Kong, Xiaoming
    Lei, Zhenxin
    ASTRONOMY & ASTROPHYSICS, 2025, 693
  • [6] Feature importance for machine learning redshifts applied to SDSS galaxies
    Hoyle, Ben
    Rau, Markus Michael
    Zitlau, Roman
    Seitz, Stella
    Weller, Jochen
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 449 (02) : 1275 - 1283
  • [7] Photometric redshifts of galaxies from SDSS and 2MASS
    Tao Wang1
    2 Harvard-Smithsonian Center for Astrophysics
    Research in Astronomy and Astrophysics, 2009, 9 (04) : 390 - 400
  • [8] QSO photometric redshifts from SDSS, WISE, and GALEX colours
    Curran, S. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (01) : L70 - L75
  • [9] Photometric redshifts of galaxies from SDSS and 2MASS
    Wang, Tao
    Huang, Jia-Sheng
    Gu, Qiu-Sheng
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (04) : 390 - 400
  • [10] Estimating cluster masses from SDSS multiband images with transfer learning
    Lin, Sheng-Chieh
    Su, Yuanyuan
    Liang, Gongbo
    Zhang, Yuanyuan
    Jacobs, Nathan
    Zhang, Yu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 512 (03) : 3885 - 3894