Neural Pixel Error Detection

被引:1
|
作者
Doggett, Erika Varis [1 ]
Wolak, Anna M. C. [1 ]
Tsatsoulis, P. Daphne [2 ]
McCarthy, Nicholas [2 ]
机构
[1] Walt Disney Studio Technol, Burbank, CA 91521 USA
[2] Accenture Labs, Dublin, Ireland
来源
SIGGRAPH '19 -ACM SIGGRAPH 2019 TALKS | 2019年
关键词
neural networks; autoencoder; anomaly detection; pixel errors; quality control; video;
D O I
10.1145/3306307.3328197
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Current video quality control entails a manual review of every frame for every video for pixel errors. A pixel error is a single or small group of anomalous pixels displaying incorrect colors, arising from multiple sources in the video production pipeline. The detection process is difficult, time consuming, and rife with human error. In this work, we present a novel approach for automated pixel error detection, applying simple machine learning techniques to great effect. We use an autoencoder architecture followed by statistical post-processing to catch all tested live action pixel anomalies while keeping the false positive rate to a minimum. We discuss previous dead pixel detection methods in image processing, and compare to other machine learning approaches.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Superconducting-Oscillatory Neural Network With Pixel Error Detection for Image Recognition
    Cheng, Ran
    Kirst, Christoph
    Vasudevan, Dilip
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
  • [2] Error Detection and Correction Using Parity and Pixel Values of Image
    Kumar, Narander
    Jaishree
    PROGRESS IN ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, PROCEEDINGS OF ICACIE 2016, VOLUME 1, 2018, 563 : 155 - 165
  • [3] A smart pixel implementation of an error diffusion neural network for digital halftoning
    Shoop, BL
    Ressler, EK
    Sayles, AH
    Hall, DA
    INTERNATIONAL JOURNAL OF OPTOELECTRONICS, 1997, 11 (03): : 217 - 228
  • [4] Convolutional Neural Network for Pixel-Wise Skyline Detection
    Frajberg, Darian
    Fraternali, Piero
    Torres, Rocio Nahime
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 12 - 20
  • [5] Pixel Level Smoke Detection Model with Deep Neural Network
    Ramasubramanian, Muthukumaran
    Kaulfus, Aaron
    Maskey, Manil
    Ramachandran, Rahul
    Gurung, Iksha
    Freitag, Brian
    Christopher, Sundar
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [6] A NEURAL SYSTEM FOR ERROR-DETECTION AND COMPENSATION
    GEHRING, WJ
    GOSS, B
    COLES, MGH
    MEYER, DE
    DONCHIN, E
    PSYCHOLOGICAL SCIENCE, 1993, 4 (06) : 385 - 390
  • [7] Neural correlates of error detection and error correction: is there a common neuroanatomical substrate?
    Fiehler, K
    Ullsperger, M
    von Cramon, DY
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 19 (11) : 3081 - 3087
  • [8] Neural Networks Based Sorting Order for Reversible Data Hiding in Pixel Prediction Error
    Rasmi A.
    Arunkumar B.
    Optical Memory and Neural Networks (Information Optics), 2018, 27 (04): : 260 - 271
  • [9] PIXEL DOMAIN REFERENCELESS VISUAL DEGRADATION DETECTION AND ERROR CONCEALMENT FOR MOBILE VIDEO
    Trudeau, Luc
    Coulombe, Stephane
    Pigeon, Steven
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [10] Sub-pixel electron detection using a convolutional neural network
    van Schayck, J. Paul
    van Genderen, Eric
    Maddox, Erik
    Roussel, Lucas
    Boulanger, Hugo
    Frojdh, Erik
    Abrahams, Jan-Pieter
    Peters, Peter J.
    Ravelli, Raimond B. G.
    ULTRAMICROSCOPY, 2020, 218