An efficient parallel recognition algorithm for bipartite-permutation graphs

被引:3
|
作者
Yu, CW
Chen, GH
机构
[1] Department of Computer Science and Information Engineering, National Taiwan University, Taipei
关键词
bipartite-permutation graph; graph recognition; graph isomorphism; parallel algorithm; parallel random access machine;
D O I
10.1109/71.481592
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present a parallel recognition algorithm for bipartite-permutation graphs. The algorithm can be executed in O(log n) time on the CRCW PRAM if O(n(3)/log n) processors are used, or O(log(2)n) time on the CREW PRAM if O(n(3)/log(2)n) processors are used. Previously, Chen and Yesha have presented another CRCW PRAM algorithm that takes O(log n) time if O(n(3)) processors are used. Compared with Chen and Yesha's algorithm, our algorithm requires either less time and fewer processors on the same machine model, or fewer processors on a weaker machine model. Besides, our algorithm can be applied to determine if two bipartite-permutation graphs are isomorphic.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] EFFICIENT PARALLEL ALGORITHMS FOR BIPARTITE PERMUTATION GRAPHS
    CHEN, L
    YESHA, Y
    NETWORKS, 1993, 23 (01) : 29 - 39
  • [2] Provably fastest parallel algorithms for bipartite permutation graphs
    FRL, P. O. Box 18345, Los Angeles, CA 90018, United States
    Parallel Processing Letters, 1999, 9 (03): : 385 - 390
  • [3] Provably fastest parallel algorithms for bipartite permutation graphs
    Chen, L
    Jiang, JY
    Nyeu, MT
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-IV, PROCEEDINGS, 1998, : 1774 - 1777
  • [4] EFFICIENT PARALLEL ALGORITHMS FOR PERMUTATION GRAPHS
    ARVIND, K
    KAMAKOTI, V
    RANGAN, CP
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1995, 26 (01) : 116 - 124
  • [5] BIPARTITE PERMUTATION GRAPHS
    SPINRAD, J
    BRANDSTADT, A
    STEWART, L
    DISCRETE APPLIED MATHEMATICS, 1987, 18 (03) : 279 - 292
  • [6] Bandwidth of Bipartite Permutation Graphs
    Uehara, Ryuhei
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 824 - 835
  • [7] Bipartite Permutation Graphs Are Reconstructible
    Kiyomi, Masashi
    Saitoh, Toshiki
    Uehara, Ryuhei
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT II, 2010, 6509 : 362 - +
  • [8] BIPARTITE PERMUTATION GRAPHS ARE RECONSTRUCTIBLE
    Kiyomi, Masashi
    Saitoh, Toshiki
    Uehara, Ryuhei
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [9] On opposition graphs, coalition graphs, and bipartite permutation graphs
    Le, Van Bang
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 26 - 33
  • [10] Solving the weighted efficient edge domination problem on bipartite permutation graphs
    Lu, CL
    Tang, CY
    DISCRETE APPLIED MATHEMATICS, 1998, 87 (1-3) : 203 - 211