Structural, electronic, and elastic properties of CuFeS2: first-principles study

被引:30
|
作者
Zhou, Meng [1 ]
Gao, Xiang [1 ]
Cheng, Yan [1 ,2 ]
Chen, Xiangrong [1 ]
Cai, Lingcang [3 ]
机构
[1] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610064, Peoples R China
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[3] China Acad Engn Phys, Inst Fluid Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621900, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
OPTICAL-PROPERTIES; CRYSTAL-STRUCTURE; AB-INITIO; CHALCOPYRITE;
D O I
10.1007/s00339-014-8930-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 A mu(B) per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 +/- A 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.
引用
收藏
页码:1145 / 1152
页数:8
相关论文
共 50 条
  • [1] Structural, electronic, and elastic properties of CuFeS2: first-principles study
    Meng Zhou
    Xiang Gao
    Yan Cheng
    Xiangrong Chen
    Lingcang Cai
    Applied Physics A, 2015, 118 : 1145 - 1152
  • [2] First-principles assessment of thermoelectric properties of CuFeS2
    Park, Junsoo
    Xia, Yi
    Ozolins, Vidvuds
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (12)
  • [3] First-Principles Comparative Study of CuFeSe2 and CuFeS2
    Liu, Xiaofan
    Du, Jie
    Hua, Long
    Liu, Kegao
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2023, 26
  • [5] First-Principles Study of Structural, Elastic and Electronic Properties of OsSi
    Li Jin
    Linghu Rong-Feng
    Yang Ze-Jin
    Cao Yang
    Yang Xiang-Dong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (04) : 701 - 706
  • [6] First-principles study on structural, electronic, and elastic properties of SrFCl
    Guzel, Y.
    Ozturk, H.
    Kurkcu, C.
    Yamcicier, C.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (09) : 2685 - 2692
  • [7] First-principles study of structural, elastic and electronic properties of α-, β- and γ-graphyne
    Ruiz Puigdollers, Antonio
    Alonso, Gerard
    Gamallo, Pablo
    CARBON, 2016, 96 : 879 - 887
  • [8] First-principles study on structural, electronic, and elastic properties of SrFCl
    Y. Güzel
    H. Öztürk
    C. Kürkçü
    Ç. Yamçıçıer
    Indian Journal of Physics, 2023, 97 : 2685 - 2692
  • [9] First-principles study on the structural, elastic, and electronic properties of γ-LiAlO2
    Wu, S. Q.
    Hou, Z. F.
    Zhu, Z. Z.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (01) : 221 - 224
  • [10] First-principles calculations of Seebeck coefficients in a magnetic semiconductor CuFeS2
    Takaki, Hirokazu
    Kobayashi, Kazuaki
    Shimono, Masato
    Kobayashi, Nobuhiko
    Hirose, Kenji
    Tsujii, Naohito
    Mori, Takao
    APPLIED PHYSICS LETTERS, 2017, 110 (07)