HSDLM: A Hybrid Sampling With Deep Learning Method for Imbalanced Data Classification

被引:27
|
作者
Hasib, Khan Md [1 ]
Towhid, Nurul Akter [2 ]
Islam, Md Rafiqul [3 ]
机构
[1] Ahsanullah Univ Sci & Engn, Dhaka, Bangladesh
[2] Jahangirnagar Univ, Dhaka, Bangladesh
[3] Univ Technol Sydney UTS, Sydney, NSW, Australia
关键词
Class Imbalance; Classification; Deep Learning; ENN; LSTM; Sampling; SMOTE; SUPPORT; SMOTE;
D O I
10.4018/IJCAC.2021100101
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Imbalanced data presents many difficulties, as the majority of learners will be prejudice against the majority class, and in severe cases, may fully disregard the minority class. Over the last few decades, class inequality has been extensively researched using traditional machine learning techniques. However, there is relatively little analytical research in the field of deep learning with class inequality. In this article, the authors classify the imbalanced data with the combination of both sampling method and deep learning method. They propose a novel sampling-based deep learning method (HSDLM) to address the class imbalance problem. They preprocess the data with label encoding and remove the noisy data with the under-sampling technique edited nearest neighbor (ENN) algorithm. They also balance the data using the over-sampling technique SMOTE and apply parallelly three types of long short-term memory networks, which is a deep learning classifier. The experimental findings indicate that HSDLM is a promising and fruitful solution to working with strongly imbalanced datasets.
引用
下载
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Learning From Imbalanced Data With Deep Density Hybrid Sampling
    Liu, Chien-Liang
    Chang, Yu-Hua
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (11): : 7065 - 7077
  • [2] A Hybrid Sampling Method for Imbalanced Data
    Gazzah, Sami
    Hechkel, Amina
    Ben Amara, Najoua Essoukri
    2015 IEEE 12TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2015,
  • [3] Hybrid Deep Learning Based Attack Detection for Imbalanced Data Classification
    Almarshdi, Rasha
    Nassef, Laila
    Fadel, Etimad
    Alowidi, Nahed
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (01): : 297 - 320
  • [4] Deep Learning and Data Sampling with Imbalanced Big Data
    Johnson, Justin M.
    Khoshgoftaar, Taghi M.
    2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019), 2019, : 175 - 183
  • [5] A hybrid sampling method for highly imbalanced and overlapped data classification with complex distribution
    Liu, Yansong
    Zhu, Li
    Ding, Lei
    Sui, He
    Shang, Wenli
    INFORMATION SCIENCES, 2024, 661
  • [6] A Hybrid Sampling SVM Approach to Imbalanced Data Classification
    Wang, Qiang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] CLUS: A New Hybrid Sampling Classification for Imbalanced Data
    Prachuabsupakij, Wanthanee
    PROCEEDINGS OF THE 2015 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2015, : 281 - 286
  • [8] Deep Learning for Imbalanced Multimedia Data Classification
    Yan, Yilin
    Chen, Min
    Shyu, Mei-Ling
    Chen, Shu-Ching
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2015, : 483 - 488
  • [9] HYBS: A novel hybrid sampling method for learning from imbalanced data sets
    Liu, Zhiyong
    Yu, Hualong
    International Journal of Advancements in Computing Technology, 2012, 4 (10) : 281 - 288
  • [10] Exploratory parallel hybrid sampling framework for imbalanced data classification
    Zheng, Ming
    Zhao, Zhuo
    Wang, Fei
    Hu, Xiaowen
    Xu, Sheng
    Li, Wanggen
    Li, Tong
    Engineering Applications of Artificial Intelligence, 2024, 138