Multi-View Normal Field Integration for 3D Reconstruction of Mirroring Objects

被引:11
|
作者
Weinmann, Michael [1 ]
Osep, Aljosa [1 ]
Ruiters, Roland [1 ]
Klein, Reinhard [1 ]
机构
[1] Univ Bonn, D-53113 Bonn, Germany
关键词
PHOTOMETRIC STEREO; STRUCTURED HIGHLIGHT; SPECULAR SURFACES; SHAPE; TRANSPARENT; ACQUISITION; INSPECTION; SHIFT;
D O I
10.1109/ICCV.2013.311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel, robust multi-view normal field integration technique for reconstructing the full 3D shape of mirroring objects. We employ a turntable-based setup with several cameras and displays. These are used to display illumination patterns which are reflected by the object surface. The pattern information observed in the cameras enables the calculation of individual volumetric normal fields for each combination of camera, display and turntable angle. As the pattern information might be blurred depending on the surface curvature or due to nonperfect mirroring surface characteristics, we locally adapt the decoding to the finest still resolvable pattern resolution. In complex real-world scenarios, the normal fields contain regions without observations due to occlusions and outliers due to interreflections and noise. Therefore, a robust reconstruction using only normal information is challenging. Via a non-parametric clustering of normal hypotheses derived for each point in the scene, we obtain both the most likely local surface normal and a local surface consistency estimate. This information is utilized in an iterative min-cut based variational approach to reconstruct the surface geometry.
引用
下载
收藏
页码:2504 / 2511
页数:8
相关论文
共 50 条
  • [1] 3D Reconstruction for Multi-view Objects
    Yu, Jun
    Yin, Wenbin
    Hu, Zhiyi
    Liu, Yabin
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [2] Multi-view 3D Reconstruction with Transformers
    Wang, Dan
    Cui, Xinrui
    Chen, Xun
    Zou, Zhengxia
    Shi, Tianyang
    Salcudean, Septimiu
    Wang, Z. Jane
    Ward, Rabab
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5702 - 5711
  • [3] 3D Texture Mapping in Multi-view Reconstruction
    Chen, Zhaolin
    Zhou, Jun
    Chen, Yisong
    Wang, Guoping
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I, 2012, 7431 : 359 - 371
  • [4] Evaluation of Multi-view 3D Reconstruction Software
    Scheoning, Julius
    Heidemann, Gunther
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 450 - 461
  • [5] 3D Reconstruction with Multi-view Texture Mapping
    Ye, Xiaodan
    Wang, Lianghao
    Li, Dongxiao
    Zhang, Ming
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 198 - 207
  • [6] Multi-View Stereo 3D Edge Reconstruction
    Bignoli, Andrea
    Romanoni, Andrea
    Matteucci, Matteo
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 867 - 875
  • [7] Adaptive fish school search optimized resnet for multi-view 3D objects reconstruction
    Premalatha, V.
    Parveen, Nikhat
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (32) : 77639 - 77666
  • [8] A review and comparison of multi-view 3D reconstruction methods
    Jadhav, Tushar
    Singh, Kulbir
    Abhyankar, Aditya
    JOURNAL OF ENGINEERING RESEARCH, 2017, 5 (03): : 50 - 72
  • [9] Overview of 3D Reconstruction Methods Based on Multi-view
    Li, Mengxin
    Zheng, Dai
    Zhang, Rui
    Yin, Jiadi
    Tian, Xiangqian
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [10] A Real World Dataset for Multi-view 3D Reconstruction
    Shrestha, Rakesh
    Hu, Siqi
    Gou, Minghao
    Liu, Ziyuan
    Tan, Ping
    COMPUTER VISION, ECCV 2022, PT VIII, 2022, 13668 : 56 - 73