A characterization of bisubmodular functions

被引:17
|
作者
Ando, K [1 ]
Fujishige, S [1 ]
Naitoh, T [1 ]
机构
[1] UNIV TSUKUBA,INST SOCIOECON PLANNING,TSUKUBA,IBARAKI 305,JAPAN
关键词
D O I
10.1016/0012-365X(94)00246-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a nonempty finite set E, let 3(E) be the set of all the ordered pairs of disjoint subsets of E. We call a function on 3(E) a biset function. A biset function f: 3(E) --> R is called bisubmodular if we have For All(X(1),Y-1),(X(2),Y-2)epsilon 3(E): f(X(1),Y-1)+f(X(2),Y-2)greater than or equal to f((X(1) boolean OR X(2))-(Y-1 boolean OR Y-2),(Y-1 boolean OR Y-2)-(X(1) boolean OR X(2))) +f(X(1) boolean AND X(2),Y-1 boolean AND Y-2). We give a simple necessary and sufficient condition for a biset function to be bisubmodular.
引用
收藏
页码:299 / 303
页数:5
相关论文
共 50 条