A constrained optimization technique for estimating environmental parameters from CZMIL Hyperspectral and Lidar Data

被引:10
|
作者
Kim, Minsu [1 ]
Park, Joong Yong [1 ]
Tuell, Grady [1 ]
机构
[1] Optech Int Inc, Kiln, MS 39556 USA
来源
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI | 2010年 / 7695卷
关键词
coastal remote sensing; ocean optics; lidar; hyperspectral; spectral optimization; inversion; IOP; SHALLOW WATERS; IMAGERY; DEPTH;
D O I
10.1117/12.851989
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have developed a combined atmospheric-oceanographic spectral optimization solution decomposing measured airborne radiance data from the passive spectrometer into environmental parameters of interest. In this model, we hold depth measurements from the lidar as fixed constraints, thereby gaining a degree of freedom in the solution, and extending the solution into deeper waters than achieved with passive data alone. In this paper, we illustrate results of the data processing procedure and assess the accuracy of estimated IOPs (Inherent Optical Properties) parameters through comparison to in-situ measurements.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Estimating the Biomass of Maize with Hyperspectral and LiDAR Data
    Wang, Cheng
    Nie, Sheng
    Xi, Xiaohuan
    Luo, Shezhou
    Sun, Xiaofeng
    REMOTE SENSING, 2017, 9 (01):
  • [2] Estimating atmosphere parameters in hyperspectral data
    Ahlberg, Jorgen
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [3] Conceptual Design of the CZMIL Data Processing System (DPS): Algorithms and Software for Fusing Lidar, Hyperspectral Data, and Digital Images
    Park, Joong Yong
    Tuell, Grady
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [4] Improvement in the technique to extract gravity wave parameters from lidar data
    Yang, Guotao
    Clemesha, Barclay
    Batista, Paulo
    Simonich, Dale
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D19)
  • [6] Hyperspectral and LiDAR Data Classification Based on Structural Optimization Transmission
    Zhang, Mengmeng
    Li, Wei
    Zhang, Yuxiang
    Tao, Ran
    Du, Qian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (05) : 3153 - 3164
  • [7] Estimating forest canopy fuel parameters using LIDAR data
    Andersen, HE
    McGaughey, RJ
    Reutebuch, SE
    REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) : 441 - 449
  • [8] Improved technique for retrieval of forest parameters from hyperspectral remote sensing data
    Kozoderov, Vladimir V.
    Dmitriev, Egor V.
    Sokolov, Anton A.
    OPTICS EXPRESS, 2015, 23 (24): : A1342 - A1353
  • [9] Improving leaf chlorophyll content estimation through constrained PROSAIL model from airborne hyperspectral and LiDAR data
    Xu, Lu
    Shi, Shuo
    Gong, Wei
    Shi, Zixi
    Qu, Fangfang
    Tang, Xingtao
    Chen, Bowen
    Sun, Jia
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [10] Estimating physiological skin parameters from hyperspectral signatures
    Vyas, Saurabh
    Banerjee, Amit
    Burlina, Philippe
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (05)