Thermodynamics of the Classical Planar Ferromagnet Close to the Zero-Temperature Critical Point: A Many-Body Approach

被引:1
|
作者
Campana, L. S. [3 ]
Cavallo, A. [1 ]
De Cesare, L. [1 ,2 ]
Esposito, U. [3 ]
Naddeo, A. [1 ,2 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, Italy
[2] CNISM, Unita Ric Salerno, I-84084 Fisciano, Italy
[3] Univ Naples 2, Dipartimento Sci Fis, I-80125 Naples, Italy
关键词
SPECTRAL-DENSITY METHOD; LONG-RANGE INTERACTIONS; ISING-MODEL; QUANTUM CRITICALITY; CROSSOVER; ELECTRON; BEHAVIOR; SYSTEMS; FIELD;
D O I
10.1155/2012/619513
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We explore the low-temperature thermodynamic properties and crossovers of a d-dimensional classical planar Heisenberg ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time Green's function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and the Tyablikov-like decoupling procedure, we obtain, for any d, a low-temperature critical scenario which is quite similar to the one found for the quantum counterpart. Remarkably, for d > 2 the discrimination between the two cases is found to be related to the different values of the shift exponent which governs the behavior of the critical line in the vicinity of the zero-temperature critical point. The observation of different values of the shift-exponent and of the related critical exponents along thermodynamic paths within the typical V-shaped region in the phase diagram may be interpreted as a signature of emerging quantum critical fluctuations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Efficient simulation of quantum many-body thermodynamics by tailoring a zero-temperature tensor network
    Wang, Ding-Zu
    Zhang, Guo-Feng
    Lewenstein, Maciej
    Ran, Shi-Ju
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [2] Zero-temperature limit and statistical quasiparticles in many-body perturbation theory
    Wellenhofer, Corbinian
    PHYSICAL REVIEW C, 2019, 99 (06)
  • [3] Zero-temperature Properties of Attractive Bose-Einstein Condensate by Correlated Many-body Approach
    Chakrabarti, Barnali
    Das, T. K.
    Debnath, P. K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2009, 157 (5-6) : 527 - 540
  • [4] Zero-temperature Properties of Attractive Bose-Einstein Condensate by Correlated Many-body Approach
    Barnali Chakrabarti
    T. K. Das
    P. K. Debnath
    Journal of Low Temperature Physics, 2009, 157
  • [5] Thermodynamics at zero temperature: Inequalities for the ground state of a quantum many-body system
    Il'in, N.
    Shpagina, E.
    Lychkovskiy, O.
    PHYSICS LETTERS A, 2021, 414
  • [6] Cumulant approach to the low-temperature thermodynamics of many-body systems
    Kohler, H
    Vojta, M
    Becker, KW
    PHYSICAL REVIEW B, 1997, 56 (11): : 6603 - 6614
  • [7] Exact zero-temperature critical behaviour of the ferromagnet in the uniaxial random field
    Feldman, DE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (10): : L177 - L183
  • [8] Many-body localization near the critical point
    Morningstar, Alan
    Huse, David A.
    Imbrie, John Z.
    PHYSICAL REVIEW B, 2020, 102 (12)
  • [9] Critical fluctuations at a many-body exceptional point
    Hanai, Ryo
    Littlewood, Peter B.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [10] MANY-BODY PROBLEM IN QUANTUM STATISTICAL MECHANICS .3. ZERO-TEMPERATURE LIMIT FOR DILUTE HARD SPHERES
    LEE, TD
    YANG, CN
    PHYSICAL REVIEW, 1960, 117 (01): : 12 - 21