Hybrid Deep Learning Architecture Approach for Photovoltaic Power Plant Output Prediction

被引:0
|
作者
Cumbajin, Myriam [1 ]
Stoean, Ruxandra [2 ]
Aguado, Jose [3 ,4 ]
Joya, Gonzalo [3 ,4 ]
机构
[1] Univ Tecnol Indoamer, Fac Ingn & Tecnol Informac & Comunicac, SISAu Res Ctr, UTI, Ambato 180103, Ecuador
[2] Univ Craiova, Str Alexandru Ioan Cuza 13, Craiova 200585, Romania
[3] Univ Malaga, Dept Ingn Elect, Av Cervantes 2, Malaga 29016, Spain
[4] Univ Malaga, Dept Tecnol Elect, Av Cervantes 2, Malaga 29016, Spain
关键词
Deep learning; Photovoltaic; Prediction; CNN; LSTM; NETWORKS;
D O I
10.1007/978-3-030-94262-5_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Photovoltaic Power is an interesting type of renewable energy, but the intermittency of solar energy resources makes its prediction an challenging task. This article presents the performance of a Hybrid Convolutional - Long short term memory network (CNN-LSTM) architecture in the prediction of photovoltaic generation. The combination was deemed important, as it can integrate the advantages of both deep learning methodologies: the spatial feature extraction and speed of CNN and the temporal analysis of the LSTM. The developed 4 layer Hybrid CNN-LSTM (HCL) model was applied on a real-world data collection for Photovoltaic Power prediction on which Group Least Square Support Vector Machines (GLSSVM) reported the lowest error in the current state of the art. Alongside the PV output, 4 other predictors are included in the models. The main result obtained from the evaluation metrics reveals that the proposed HCL provides better prediction than the GLSSVM model since the MSE and MAE errors of HCL are significantly lower than the same errors of the GLSSVM. So, the proposed Hybrid CNN-LSTM architecture is a promising approach for increasing the accuracy in Photovoltaic Power Prediction.
引用
收藏
页码:26 / 37
页数:12
相关论文
共 50 条
  • [1] SUPERVISED LEARNING OF PHOTOVOLTAIC POWER PLANT OUTPUT PREDICTION MODELS
    Prokop, Lukas
    Misak, Stanislav
    Snasel, Vaclav
    Platos, Jan
    Kroemer, Pavel
    NEURAL NETWORK WORLD, 2013, 23 (04) : 321 - 338
  • [2] Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach
    Li, Gangqiang
    Xie, Sen
    Wang, Bozhong
    Xin, Jiantao
    Li, Yunfeng
    Du, Shengnan
    IEEE ACCESS, 2020, 8 (08) : 175871 - 175880
  • [3] A note on power output prediction for photovoltaic power generation using deep learning
    Maeda Y.
    IEEJ Transactions on Power and Energy, 2019, 139 (12) : 783 - 784
  • [4] A new hybrid model for photovoltaic output power prediction
    Zou J.
    Wei M.
    Song Q.
    Zhou Z.
    Environmental Science and Pollution Research, 2023, 30 (58) : 122934 - 122957
  • [5] Photovoltaic Power Prediction Based on Hybrid Deep Learning Networks and Meteorological Data
    Guo, Wei
    Xu, Li
    Wang, Tian
    Zhao, Danyang
    Tang, Xujing
    SENSORS, 2024, 24 (05)
  • [6] Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach
    Zhang, Yagang
    Pan, Zhiya
    Wang, Hui
    Wang, Jingchao
    Zhao, Zheng
    Wang, Fei
    ENERGY, 2023, 283
  • [7] Power Output Prediction of Photovoltaic Plant Based on Big Data
    Bin Zhang
    Chi Zhang
    Wenqing Zhao
    Gang Li
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ADVANCED ENGINEERING MATERIALS AND TECHNOLOGY, 2015, 38 : 620 - 624
  • [8] Based on Time Series Prediction of Photovoltaic Power Plant Output
    Li Weiguo
    Liao Zhimin
    Sun Xuelin
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 5142 - 5147
  • [9] Accurate solar power prediction with advanced hybrid deep learning approach
    Song, Dongran
    Rehman, Muhammad Shams Ur
    Deng, Xiaofei
    Xiao, Zhao
    Noor, Javeria
    Yang, Jian
    Dong, Mi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [10] Machine Learning Algorithms for Photovoltaic System Power Output Prediction
    Theocharides, Spyros
    Makrides, George
    Georghiou, George E.
    Kyprianou, Andreas
    2018 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2018,