Encoding Human Driving Styles in Motion Planning for Autonomous Vehicles

被引:11
|
作者
Karlsson, Jesper [1 ]
van Waveren, Sanne [1 ]
Pek, Christian [1 ]
Torre, Ilaria [1 ]
Leite, Iolanda [1 ]
Tumova, Jana [1 ]
机构
[1] KTH Royal Inst Technol Stockholm, Div Robot Percept & Learning, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Autonomous Vehicle Navigation; Formal Methods in Robotics and Automation; Human Factors and Human-in-the-Loop;
D O I
10.1109/ICRA48506.2021.9561777
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driving styles play a major role in the acceptance and use of autonomous vehicles. Yet, existing motion planning techniques can often only incorporate simple driving styles that are modeled by the developers of the planner and not tailored to the passenger. We present a new approach to encode human driving styles through the use of signal temporal logic and its robustness metrics. Specifically, we use a penalty structure that can be used in many motion planning frameworks, and calibrate its parameters to model different automated driving styles. We combine this penalty structure with a set of signal temporal logic formula, based on the Responsibility-Sensitive Safety model, to generate trajectories that we expected to correlate with three different driving styles: aggressive, neutral, and defensive. An online study showed that people perceived different parameterizations of the motion planner as unique driving styles, and that most people tend to prefer a more defensive automated driving style, which correlated to their self-reported driving style.
引用
收藏
页码:1050 / 1056
页数:7
相关论文
共 50 条
  • [1] Local Motion Planning and Tracking o Autonomous Driving Vehicles
    Zhu, Wangwang
    Zhang, Xi
    Zhao, Baixuan
    Peng, Shiwei
    Guo, Pengfei
    Chen, Hao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7679 - 7684
  • [2] Driving Environment Uncertainty-Aware Motion Planning for Autonomous Vehicles
    Xiaolin Tang
    Kai Yang
    Hong Wang
    Wenhao Yu
    Xin Yang
    Teng Liu
    Jun Li
    Chinese Journal of Mechanical Engineering, 2022, 35
  • [3] Driving Environment Uncertainty-Aware Motion Planning for Autonomous Vehicles
    Tang, Xiaolin
    Yang, Kai
    Wang, Hong
    Yu, Wenhao
    Yang, Xin
    Liu, Teng
    Li, Jun
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2022, 35 (01)
  • [4] Motion Planning for Dynamic Scenario Vehicles in Autonomous-Driving Simulations
    Li, Yanfeng
    IEEE ACCESS, 2023, 11 : 2035 - 2047
  • [5] Driving Environment Uncertainty-Aware Motion Planning for Autonomous Vehicles
    Xiaolin Tang
    Kai Yang
    Hong Wang
    Wenhao Yu
    Xin Yang
    Teng Liu
    Jun Li
    Chinese Journal of Mechanical Engineering, 2022, 35 (05) : 317 - 330
  • [6] Coordinated Motion Planning for Heterogeneous Autonomous Vehicles Based on Driving Behavior Primitives
    Guan, Haijie
    Wang, Boyang
    Gong, Jianwei
    Chen, Huiyan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 11934 - 11949
  • [7] Learning Driving Styles for Autonomous Vehicles from Demonstration
    Kuderer, Markus
    Gulati, Shilpa
    Burgard, Wolfram
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 2641 - 2646
  • [8] Roundabout Trajectory Planning: Integrating Human Driving Models for Autonomous Vehicles
    Leonardi, Salvatore
    Distefano, Natalia
    SUSTAINABILITY, 2023, 15 (23)
  • [9] Pseudospectral Motion Planning for Autonomous Vehicles
    Gong, Qi
    Lewis, L. R.
    Ross, I. Michael
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (03) : 1039 - 1045
  • [10] Kinodynamic Motion Planning for Autonomous Vehicles
    Choi, Jiwung
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2014, 11