Possible cardinalities of maximal abelian subgroups of quotients of permutation groups of the integers

被引:0
|
作者
Shelah, Saharon [1 ]
Steprans, Juris
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, Piscataway, NJ 08854 USA
关键词
D O I
10.4064/fm196-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a group then the abelian subgroup spectrum of G is defined to be the set of all kappa such that there is a maximal abelian subgroup of G of size kappa. The cardinal invariant A(G) is defined to be the least uncountable cardinal in the abelian subgroup spectrum of G. The value of A(G) is examined for various groups G which are quotients of certain permutation groups on the integers. An important special case, to which much of the paper is devoted, is the quotient of the full symmetric group by the normal subgroup of permutations with finite support. It is shown that, if we use G to denote this group, then A(G) <= a. Moreover, it is consistent that A(G) not equal a. Related results are obtained for other quotients using Borel ideals.
引用
收藏
页码:197 / 235
页数:39
相关论文
共 50 条
  • [1] ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS
    Rios M.A.
    Avetisyan Z.
    Berlow K.
    Martin I.
    Rakholia G.
    Yang K.
    Zhang H.
    Zhao Z.
    [J]. Journal of Mathematical Sciences, 2022, 266 (1) : 42 - 65
  • [2] MAXIMAL ABELIAN SUBGROUPS OF SYMMETRIC GROUPS
    DIXON, JD
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (03): : 426 - &
  • [3] FINITE PERMUTATION-GROUPS WITH LARGE ABELIAN QUOTIENTS
    KOVACS, LG
    PRAEGER, CE
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1989, 136 (02) : 283 - 292
  • [4] Abelian Carter subgroups in finite permutation groups
    Enrico Jabara
    Pablo Spiga
    [J]. Archiv der Mathematik, 2013, 101 : 301 - 307
  • [5] Abelian Carter subgroups in finite permutation groups
    Jabara, Enrico
    Spiga, Pablo
    [J]. ARCHIV DER MATHEMATIK, 2013, 101 (04) : 301 - 307
  • [6] ON MINIMAL DEGREES OF PERMUTATION REPRESENTATIONS OF ABELIAN QUOTIENTS OF FINITE GROUPS
    Franchi, Clara
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (03) : 408 - 413
  • [7] MAXIMAL ABELIAN SUBGROUPS OF FREE PROFINITE GROUPS
    HARAN, D
    LUBOTZKY, A
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 97 (JAN) : 51 - 55
  • [8] Finite groups with abelian second maximal subgroups
    Meng, Wei
    Chen, Wei
    Lu, Jiakuan
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1577 - 1583
  • [9] Maximal order Abelian subgroups of Coxeter groups
    Burns, John M.
    Pfeiffer, Goetz
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2023, 65 (01) : 114 - 120
  • [10] Maximal orders of Abelian subgroups in finite Chevalley groups
    Vdovin, EP
    [J]. MATHEMATICAL NOTES, 2001, 69 (3-4) : 475 - 498