Control chaos to different stable states for a piecewise linear circuit system by a simple linear control

被引:15
|
作者
Fu, Shihui [1 ]
Liu, Yuan [1 ]
Ma, Huizhen [1 ]
Du, Ying [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] East China Univ Sci & Technol, Sch Sci, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Circuit system; Chaos control; Equilibrium manifold; Equilibrium point; Periodic orbit; Limit cycle; CHUAS CIRCUIT; FEEDBACK-CONTROL; N-SCROLL; BIFURCATION; ATTRACTORS; SYNCHRONIZATION; VAN;
D O I
10.1016/j.chaos.2019.109431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly investigate chaos control of a piecewise linear circuit system. According to the characteristic of this system, we modify Hwang's linear continuous controller and obtain a more simple controller consisting of two parts, by which we find from theory the extent of control parameter when chaotic motion is controlled to equilibrium manifold, equilibrium point, periodic orbit or limit cycle. Numerical simulation also verifies the method is effective. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CONTROL OF CHAOS FROM A PIECEWISE-LINEAR HYSTERESIS CIRCUIT
    SAITO, T
    MITSUBORI, K
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (03): : 168 - 172
  • [2] A 555 Timer IC Chaotic Circuit: Chaos in a Piecewise Linear System With Stable but No Unstable Equilibria
    Niranatlumpong, Peera
    Allen, Michael A.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (02) : 798 - 810
  • [3] OPTIMAL CONTROL OF A PIECEWISE LINEAR SYSTEM
    DAVIS, DN
    MAYNE, DQ
    INTERNATIONAL JOURNAL OF CONTROL, 1966, 3 (02) : 129 - &
  • [4] Stabilizing and destabilizing control for a piecewise-linear circuit
    Tsubone, T
    Saito, T
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (02): : 172 - 177
  • [5] Stabilizing and destabilizing control for a piecewise-linear circuit
    Hosei Univ, Tokyo, Japan
    IEEE Trans Circuits Syst I Fundam Theor Appl, 2 (172-177):
  • [6] CONTROL OF CHAOS IN PIECEWISE-LINEAR SYSTEMS WITH SWITCHING NONLINEARITY
    CHAKRABARTY, K
    BANERJEE, S
    PHYSICS LETTERS A, 1995, 200 (02) : 115 - 120
  • [7] From Floquet exponents to control of chaos in piecewise linear systems
    Batlle, C
    Fossas, E
    Olivar, G
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL II: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 100 - 103
  • [8] INTEGRATED CONTROL SYSTEM FOR LINEAR OR PIECEWISE LINEAR SET-POINT CONTROL.
    Shiau, Shyi Lian
    Huang, Hsiao Ping
    1600, (14):
  • [9] Bifurcation control and chaos in a linear impulsive system
    蒋贵荣
    胥布工
    杨启贵
    Chinese Physics B, 2009, (12) : 5235 - 5241
  • [10] Bifurcation control and chaos in a linear impulsive system
    Jiang Gui-Rong
    Xu Bu-Gong
    Yang Qi-Gui
    CHINESE PHYSICS B, 2009, 18 (12) : 5235 - 5241