Mean temperature profiles in turbulent thermal convection

被引:23
|
作者
Shishkina, Olga [1 ]
Horn, Susanne [2 ]
Emran, Mohammad S. [1 ]
Ching, Emily S. C. [3 ]
机构
[1] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
[2] Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[3] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW FLUIDS | 2017年 / 2卷 / 11期
关键词
RAYLEIGH-BENARD CONVECTION; BOUNDARY-LAYER; PRANDTL-NUMBER; HEAT-TRANSPORT;
D O I
10.1103/PhysRevFluids.2.113502
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To predict the mean temperature profiles in turbulent thermal convection, the thermal boundary layer (BL) equation including the effects of fluctuations has to be solved. In Shishkina et al. [Phys. Rev. Lett. 114, 114302 (2015)], the thermal BL equation with the fluctuations taken into account as an eddy thermal diffusivity has been solved for large Prandtl-number fluids for which the eddy thermal diffusivity and the velocity field can be approximated, respectively, as a cubic and a linear function of the distance from the plate. In the present work, we make use of the idea of Prandtl's mixing length model and relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal BL equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters for fluids with a general Prandtl number. With a proper choice of the parameters, our predictions of the temperature profiles are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers from 0.01 to 2547.9 and Rayleigh numbers from 10(7) to 10(9).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mean velocity and temperature profiles in turbulent vertical convection
    Li, Min
    Jia, Pan
    Liu, Haihu
    Jiao, Zhenjun
    Zhang, Yang
    JOURNAL OF FLUID MECHANICS, 2023, 977
  • [2] Mean temperature profiles in turbulent Rayleigh-Benard convection of water
    Shishkina, Olga
    Thess, Andre
    JOURNAL OF FLUID MECHANICS, 2009, 633 : 449 - 460
  • [3] TEMPERATURE AND VELOCITY PROFILES OF TURBULENT CONVECTION IN WATER
    TILGNER, A
    BELMONTE, A
    LIBCHABER, A
    PHYSICAL REVIEW E, 1993, 47 (04) : R2253 - R2256
  • [4] Logarithmic Mean Temperature Profiles and Their Connection to Plume Emissions in Turbulent Rayleigh-Benard Convection
    van der Poel, Erwin P.
    Ostilla-Monico, Rodolfo
    Verzicco, Roberto
    Grossmann, Siegfried
    Lohse, Detlef
    PHYSICAL REVIEW LETTERS, 2015, 115 (15)
  • [5] Mean velocity and temperature profiles in turbulent Rayleigh-Benard convection at low Prandtl numbers
    Xu, Wei
    Wang, Yin
    He, Xiaozhou
    Wang, Xiaoping
    Schumacher, Joerg
    Huang, Shi-Di
    Tong, Penger
    JOURNAL OF FLUID MECHANICS, 2021, 918
  • [6] Mean temperature profile and thermal displacement thickness in turbulent Rayleigh-Benard convection
    Wei, Tie
    du Puits, Ronald
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 148
  • [7] Mean temperature profiles in turbulent internal flows
    Pirozzoli, Sergio
    Modesti, Davide
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 109
  • [8] THE MEAN TEMPERATURE PROFILE AND THE FLUX-PROFILE RELATION IN TURBULENT THERMAL-CONVECTION
    ANGIRASA, D
    NIEUWSTADT, FTM
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1992, 19 (03) : 395 - 408
  • [9] Azimuthal motion of the mean wind in turbulent thermal convection
    Xi, Heng-Dong
    Zhou, Quan
    Xia, Ke-Qing
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [10] Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh-Benard convection
    Wang, Yin
    He, Xiaozhou
    Tong, Penger
    PHYSICAL REVIEW FLUIDS, 2016, 1 (08):