RIESZ-TYPE CRITERIA FOR THE RIEMANN HYPOTHESIS

被引:7
|
作者
Agarwal, Archit [1 ]
Garg, Meghali [1 ]
Maji, Bibekananda [1 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Indore 453552, Madhya Pradesh, India
关键词
Möbious function; non-trivial zeros; Riemann Hypothesis; Riemann zeta function;
D O I
10.1090/proc/16064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1916, Riesz proved that the Riemann Hypothesis is equivalent to the bound sigma(infinity)(n=1) mu(n)/n(2 ) exp (- x/n(2)) = O-is an element of (x(-3/4+is an element of)), as x -> infinity, for any is an element of > 0. Around the same time, Hardy and Littlewood gave another equivalent criterion for the Riemann Hypothesis while correcting an identity of Ramanujan. In the present paper, we establish a one-variable generalization of the identity of Hardy and Littlewood and as an application, we provide Riesz-type criteria for the Riemann Hypothesis. In particular, we obtain the bound given by Riesz as well as the bound of Hardy and Littlewood.
引用
收藏
页码:5151 / 5163
页数:13
相关论文
共 50 条
  • [1] Riesz-type criteria and theta transformation analogues
    Dixit, Atul
    Roy, Arindam
    Zaharescu, Alexandru
    JOURNAL OF NUMBER THEORY, 2016, 160 : 385 - 408
  • [2] Hardy–Littlewood–Riesz type equivalent criteria for the Generalized Riemann hypothesis
    Meghali Garg
    Bibekananda Maji
    Monatshefte für Mathematik, 2023, 201 : 771 - 788
  • [3] Hardy-Littlewood-Riesz type equivalent criteria for the Generalized Riemann hypothesis
    Garg, Meghali
    Maji, Bibekananda
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (03): : 771 - 788
  • [4] Riesz-type criteria for L-functions in the Selberg class
    Gupta, Shivajee
    Vatwani, Akshaa
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (03): : 1062 - 1088
  • [5] Minimisers of a general Riesz-type problem
    Novaga, M.
    Pratelli, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 209
  • [6] Riesz-type inequalities on general sets
    Nagy, Bela
    Totik, Vilmos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 344 - 351
  • [7] NEW TYPE OF CRITERIA CONCERNING RIEMANN HYPOTHESIS
    ECALLE, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (01): : 23 - 25
  • [8] Riesz-type inequalities for conjugate differential forms
    Cialdea, A.
    Silverio, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1513 - 1532
  • [9] Strong summability methods in a Riesz-type family
    Seletski, Anna
    Tali, Anne
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2011, 60 (04) : 238 - 250
  • [10] Property (k) and commuting Riesz-type perturbations
    Zariouh H.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2): : 233 - 240