Manifolds homotopy equivalent to Pn # Pn

被引:5
|
作者
Brookman, Jeremy [1 ]
Davis, James F. [1 ]
Khan, Qayum [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
D O I
10.1007/s00208-007-0099-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify, up to homeomorphism, all closed manifolds having the homotopy type of a connected sum of two copies of real projective n-space.
引用
收藏
页码:947 / 962
页数:16
相关论文
共 50 条
  • [1] Manifolds homotopy equivalent to Pn # Pn
    Jeremy Brookman
    James F. Davis
    Qayum Khan
    Mathematische Annalen, 2007, 338 : 947 - 962
  • [2] On Bieberbach subgroups of Bn/[Pn, Pn] and flat manifolds with cyclic holonomy Z2d
    Ocampo, Oscar
    Gregorio Rodriguez-Nieto, Jose
    TOPOLOGY AND ITS APPLICATIONS, 2019, 265
  • [3] Functions and Vector Fields on C(ℂPN)-Singular Manifolds
    Libardi Alice Kimie Miwa
    Vladimir Sharko
    Ukrainian Mathematical Journal, 2014, 66 : 347 - 351
  • [4] SET-THEORETIC INTERSECTIONS AND CONNECTEDNESS OF MANIFOLDS IN PN
    NAGEL, U
    VOGEL, W
    ARCHIV DER MATHEMATIK, 1987, 49 (05) : 414 - 419
  • [5] On sufficiently connected manifolds which are homotopy equivalent
    Kobayakawa, N
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1998, 38 (04): : 749 - 768
  • [6] CLASSIFICATION OF COMPACT MANIFOLDS HOMOTOPY EQUIVALENT TO SPHERE
    KATO, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (06): : 991 - &
  • [7] Combined analysis of the pn → dπ+π- and pn → pnπ+π- cross sections and implications for the interpretation of the pn → dπ+π- data
    Albaladejo, M.
    Oset, E.
    PHYSICAL REVIEW C, 2013, 88 (01):
  • [8] ASYMPTOTIC PN AND DOUBLE PN APPROXIMATIONS
    HUANG, ST
    LEWIS, EE
    JOURNAL OF NUCLEAR ENERGY, 1972, 26 (05): : 231 - &
  • [9] Measurement of the quasifree pn→pn η reaction
    Calen, H
    Dyring, J
    Fransson, K
    Gustafsson, L
    Haggstrom, S
    Hoistad, B
    Johansson, A
    Johansson, T
    Kullander, S
    Mortsell, A
    Ruber, R
    Schuberth, U
    Zlomanczuk, J
    Kilian, K
    Oelert, W
    Sefzick, T
    Bilger, R
    Brodowski, W
    Clement, H
    Wagner, GJ
    Bondar, A
    Kuzmin, A
    Shwartz, B
    Sidorov, V
    Sukhanov, A
    Kupsc, A
    Marciniewski, P
    Stepaniak, J
    Dunin, V
    Morosov, B
    Povtorejko, A
    Sukhanov, A
    Zernov, A
    Zabierowski, J
    Turowiecki, A
    Wilhelmi, Z
    PHYSICAL REVIEW C, 1998, 58 (05): : 2667 - 2670
  • [10] SUBGROUPS OF Z(PN)BYZ(PN)
    BLACKBURN, N
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10): : 1012 - 1015