Small cancellations over relatively hyperbolic groups and embedding theorems

被引:72
|
作者
Osin, Denis [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Stevenson Ctr 1326, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
SUBGROUPS;
D O I
10.4007/annals.2010.172.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the small cancellation theory over ordinary hyperbolic groups to relatively hyperbolic settings. This generalization is then used to prove various embedding theorems for countable groups. For instance, we show that any countable torsion free group can be embedded into a finitely generated group with exactly two conjugacy classes. In particular, this gives the affirmative answer to the well-known question of the existence of a finitely generated group G other than Z/2Z such that all nontrivial elements of G are conjugate.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
  • [11] Growth of relatively hyperbolic groups
    Xie, Xiangdong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) : 695 - 704
  • [12] Examples of Relatively Hyperbolic Groups
    Andrzej Szczepański
    Geometriae Dedicata, 2002, 93 : 139 - 142
  • [13] Endomorphisms of relatively hyperbolic groups
    Belegradek, Igor
    Szczepanski, Andrzej
    Belegradek, Oleg V.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (01) : 97 - 110
  • [14] Examples of relatively hyperbolic groups
    Szczepanski, A
    GEOMETRIAE DEDICATA, 2002, 93 (01) : 139 - 142
  • [15] Quasiconvexity in relatively hyperbolic groups
    Gerasimov, Victor
    Potyagailo, Leonid
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 710 : 95 - 135
  • [16] McCool groups of toral relatively hyperbolic groups
    Guirardel, Vincent
    Levitt, Gilbert
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (06): : 3485 - 3534
  • [17] Notes on Relatively Hyperbolic Groups and Relatively Quasiconvex Subgroups
    Matsuda, Yoshifumi
    Oguni, Shin-ichi
    Yamagata, Saeko
    TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 99 - 123
  • [18] The generalised word problem in hyperbolic and relatively hyperbolic groups
    Ciobanu, Laura
    Holt, Derek
    Rees, Sarah
    JOURNAL OF ALGEBRA, 2018, 516 : 149 - 171
  • [19] QUASI-HYPERBOLIC PLANES IN RELATIVELY HYPERBOLIC GROUPS
    Mackay, John M.
    Sisto, Alessandro
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 139 - 174
  • [20] Peripheral fillings of relatively hyperbolic groups
    Denis V. Osin
    Inventiones mathematicae, 2007, 167 : 295 - 326