An actor-critic strategy for a safe and efficient human robot collaboration

被引:1
|
作者
Gabrielli, Guglielmo [1 ]
Secchi, Cristian [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Sci & Methods Engn, Modena, Italy
关键词
SPEED; POWER;
D O I
10.1109/ICAR53236.2021.9659462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fulfilling the ISO/TS 15066 regulation is crucial for implementing a certifiable human-robot collaborative application. If not properly embedded in the definition of the control action for the robot, the application of ISO/TS 15066 requirements can lead to a conservative and inefficient behavior of the robot. In order to maximize the performance, in this paper we propose an approach based on Deep Reinforcement Learning (DRL) for integrating the safety standards in a collaborative application. The proposed strategy is experimentally validated.
引用
收藏
页码:919 / 926
页数:8
相关论文
共 50 条
  • [1] Collaborative Learning of Human and Computer: Supervised Actor-Critic based Collaboration Scheme
    Devanga, Ashwin
    Yamauchi, Koichiro
    [J]. ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 794 - 801
  • [2] Efficient Sequence Labeling with Actor-Critic Training
    Najafi, Saeed
    Cherry, Colin
    Kondrak, Grzegorz
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11489 : 466 - 471
  • [3] An Actor-Critic Approach for Legible Robot Motion Planner
    Zhao, Xuan
    Fan, Tingxiang
    Wang, Dawei
    Hu, Zhe
    Han, Tao
    Pan, Jia
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5949 - 5955
  • [4] Actor-critic algorithms
    Konda, VR
    Tsitsiklis, JN
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 1008 - 1014
  • [5] Natural Actor-Critic
    Peters, Jan
    Schaal, Stefan
    [J]. NEUROCOMPUTING, 2008, 71 (7-9) : 1180 - 1190
  • [6] On actor-critic algorithms
    Konda, VR
    Tsitsiklis, JN
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) : 1143 - 1166
  • [7] Natural Actor-Critic
    Peters, J
    Vijayakumar, S
    Schaal, S
    [J]. MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 280 - 291
  • [8] Master-Slave Policy Collaboration for Actor-Critic Methods
    Li, Xiaomu
    Liu, Quan
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [9] Efficient Model Learning Methods for Actor-Critic Control
    Grondman, Ivo
    Vaandrager, Maarten
    Busoniu, Lucian
    Babuska, Robert
    Schuitema, Erik
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (03): : 591 - 602
  • [10] Dual Variable Actor-Critic for Adaptive Safe Reinforcement Learning
    Lee, Junseo
    Heo, Jaeseok
    Kim, Dohyeong
    Lee, Gunmin
    Oh, Songhwai
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7568 - 7573