Estimation of drift and diffusion functions from unevenly sampled time-series data

被引:4
|
作者
Davis, William [1 ]
Buffett, Bruce [1 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SPECTRAL-ANALYSIS; CARBON-CYCLE; EARTHS CLIMATE; LATE PALEOCENE; EVENTS; COEFFICIENTS;
D O I
10.1103/PhysRevE.106.014140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Complex systems can often be modeled as stochastic processes. However, physical observations of such systems are often irregularly spaced in time, leading to difficulties in estimating appropriate models from data. Here we present extensions of two methods for estimating drift and diffusion functions from irregularly sampled time-series data. Our methods are flexible and applicable to a variety of stochastic systems, including non-Markov processes or systems contaminated with measurement noise. To demonstrate applicability, we use this approach to analyze an irregularly sampled paleoclimatological isotope record, giving insights into underlying physical processes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Clustering of unevenly sampled gene expression time-series data
    Möller-Levet, CS
    Klawonn, F
    Cho, KH
    Yin, H
    Wolkenhauer, O
    [J]. FUZZY SETS AND SYSTEMS, 2005, 152 (01) : 49 - 66
  • [2] Quantitative estimation of drift and diffusion functions from time series data
    Kleinhans, David
    Riedrich, Rudolf
    [J]. WIND ENERGY, 2007, : 129 - +
  • [3] A PRESCRIPTION FOR PERIOD ANALYSIS OF UNEVENLY SAMPLED TIME-SERIES
    HORNE, JH
    BALIUNAS, SL
    [J]. ASTROPHYSICAL JOURNAL, 1986, 302 (02): : 757 - 763
  • [4] Estimation of drift and diffusion functions from time series data: A maximum likelihood framework
    Kleinhans, David
    [J]. PHYSICAL REVIEW E, 2012, 85 (02)
  • [5] Spectral estimation in unevenly sampled space of periodically expressed microarray time series data
    Liew, Alan Wee-Chung
    Xian, Jun
    Wu, Shuanhu
    Smith, David
    Yan, Hong
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [6] Spectral estimation in unevenly sampled space of periodically expressed microarray time series data
    Alan Wee-Chung Liew
    Jun Xian
    Shuanhu Wu
    David Smith
    Hong Yan
    [J]. BMC Bioinformatics, 8
  • [7] Fast estimation of continuous-time ARX parameters from unevenly sampled data
    Mossberg, M
    Larsson, EK
    [J]. ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 4482 - 4483
  • [8] Testing for nonlinearity in unevenly sampled time series
    Schmitz, A
    Schreiber, T
    [J]. PHYSICAL REVIEW E, 1999, 59 (04): : 4044 - 4047
  • [9] OPTIMAL ESTIMATION OF TIME-SERIES FUNCTIONS
    WEGMAN, EJ
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (06): : 763 - 767
  • [10] Wavelets for period analysis of unevenly sampled time series
    Foster, G
    [J]. ASTRONOMICAL JOURNAL, 1996, 112 (04): : 1709 - 1729