LOGARITHMICALLY IMPROVED REGULARITY CRITERIA FOR THE NAVIER-STOKES EQUATIONS IN HOMOGENEOUS BESOV SPACES

被引:0
|
作者
Nguyen Anh Dao [1 ]
Ildefonso Diaz, Jesus [2 ]
机构
[1] Univ Econ Ho Chi Minh City, Inst Appl Math, Ho Chi Minh City, Vietnam
[2] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Madrid 28040, Spain
关键词
Besov space; Navier-Stokes equations; regularity criteria; SMOOTH SOLUTIONS; WEAK SOLUTIONS; EULER; BMO; INEQUALITIES; LP;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a logarithmically improved regularity criteria in terms of the velocity, or the vorticity, for the Navier-Stokes equations in homogeneous Besov spaces. More precisely, we prove that if the weak solution u satisfies either integral(T)(0) parallel to u(t)parallel to(2/1-alpha)((B)over dot infinity,infinity-alpha)/1 + log(+) parallel to u(t)parallel to((H)over dots0) dt < infinity, or integral(T)(0) parallel to w(t)parallel to(2/2-alpha)((B)over dot infinity,infinity-alpha)/1 + log(+) parallel to w(t)parallel to((H)over dots0) dt < infinity, where w = rot u, then u is regular on (0, T]. Our conclusions improve some results by Fan et al. [5].
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces
    Zhou, Yong
    Gala, Sadek
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 498 - 501
  • [2] Logarithmically improved regularity criteria for the Navier-Stokes equations in Lorentz spaces
    Wei, Zhiqiang
    Wang, Yu-Zhu
    Wang, Yin-Xia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9848 - 9852
  • [3] Logarithmically improved regularity criteria for Navier-Stokes and related equations
    Fan, Jishan
    Ozawa, Tohru
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (17) : 2309 - 2318
  • [4] Logarithmically Improved Regularity Criteria for the Navier-Stokes and MHD Equations
    Fan, Jishan
    Jiang, Song
    Nakamura, Gen
    Zhou, Yong
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (04) : 557 - 571
  • [5] On logarithmically improved regularity criteria for the Navier-Stokes equations in Rn
    Fan, Jishan
    Jiang, Song
    Nakamura, Gen
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2011, 76 (02) : 298 - 311
  • [6] LOGARITHMICALLY IMPROVED REGULARITY CRITERIA FOR THE GENERALIZED NAVIER-STOKES AND RELATED EQUATIONS
    Fan, Jishan
    Fukumoto, Yasuhide
    Zhou, Yong
    [J]. KINETIC AND RELATED MODELS, 2013, 6 (03) : 545 - 556
  • [7] A logarithmically improved regularity criterion for the Navier-Stokes equations
    Liu, Qiao
    Zhao, Jihong
    Cui, Shangbin
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 167 (3-4): : 503 - 509
  • [8] LOGARITHMICALLY IMPROVED CRITERIA FOR EULER AND NAVIER-STOKES EQUATIONS
    Zhou, Yi
    Lei, Zhen
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2715 - 2719
  • [9] Logarithmically Improved Regularity Criteria for the Navier–Stokes and MHD Equations
    Jishan Fan
    Song Jiang
    Gen Nakamura
    Yong Zhou
    [J]. Journal of Mathematical Fluid Mechanics, 2011, 13 : 557 - 571
  • [10] A logarithmically improved on regularity criterion for the Navier-Stokes equations in terms of the pressure
    Chen, Wenying
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 1 - 3