Low-Cost and Confidentiality-Preserving Data Acquisition for Internet of Multimedia Things

被引:88
|
作者
Zhang, Yushu [1 ,2 ]
He, Qi [1 ]
Xiang, Yong [2 ]
Zhang, Leo Yu [2 ]
Liu, Bo [3 ]
Chen, Junxin [4 ]
Xie, Yiyuan [1 ]
机构
[1] Southwest Univ, Chongqing Univ, Sch Elect & Informat Engn, Key Lab Networks & Cloud Comp Secur, Chongqing 400715, Peoples R China
[2] Deakin Univ, Sch Informat Technol, Geelong, Vic 3125, Australia
[3] La Trobe Univ, Dept Engn, Melbourne, Vic 3086, Australia
[4] Northeastern Univ, Sinodutch Biomed & Informat Engn Sch, Shenyang 110169, Liaoning, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2018年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
Big image data; chaotic encryption; compressive sensing (CS); Internet of Multimedia Things (IoMT); FRACTIONAL MELLIN TRANSFORM; EFFICIENT IMAGE ENCRYPTION; DATA AGGREGATION; CHAOTIC SYSTEM; MAP; RECONSTRUCTION; COMPRESSION; DIFFUSION; SECURE;
D O I
10.1109/JIOT.2017.2781737
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Internet of Multimedia Things (IoMT) faces the challenge of how to realize low-cost data acquisition while still preserve data confidentiality. In this paper, we present a lowcost and confidentiality-preserving data acquisition framework for IoMT. First, we harness chaotic convolution and random subsampling to capture multiple image signals. The measurement matrix is under the control of chaos, ensuring the security of the sampling process. Next, we assemble these sampled images into a big master image, and then encrypt this master image based on Arnold transform and single value diffusion. The computation of these two transforms only requires some lowcomplexity operations. Finally, the encrypted image is delivered to cloud servers for storage and decryption service. Experimental results demonstrate the security and effectiveness of the proposed framework.
引用
收藏
页码:3442 / 3451
页数:10
相关论文
共 50 条
  • [1] Low-Cost and Confidentiality-Preserving Multi-Image Compressed Acquisition and Separate Reconstruction for Internet of Multimedia Things
    Wang, Mengdi
    Xiao, Di
    Xiang, Yong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03) : 1662 - 1673
  • [2] Preserving Data Confidentiality in Internet of Things
    Chanal P.M.
    Kakkasageri M.S.
    [J]. SN Computer Science, 2021, 2 (1)
  • [3] Secure Data Types: A Simple Abstraction for Confidentiality-Preserving Data Analytics
    Savvides, Savvas
    Stephen, Julian James
    Ardekani, Masoud Saeida
    Sundaram, Vinaitheerthan
    Eugster, Patrick
    [J]. PROCEEDINGS OF THE 2017 SYMPOSIUM ON CLOUD COMPUTING (SOCC '17), 2017, : 479 - 492
  • [4] LOW-COST DATA ACQUISITION
    不详
    [J]. DATA PROCESSING, 1971, 13 (02): : 98 - &
  • [5] Low-cost Internet of Things Ocean Observation
    Wright, N. G.
    Chan, H. K.
    [J]. OCEANS 2016 MTS/IEEE MONTEREY, 2016,
  • [6] Efficient Confidentiality-Preserving Data Analytics over Symmetrically Encrypted Datasets
    Savvides, Savvas
    Khandelwal, Darshika
    Eugster, Patrick
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (08): : 1290 - 1303
  • [7] Low-cost data acquisition system
    Schreiber, Robert
    [J]. Sensors (Peterborough, NH), 1999, 16 (06): : 40 - 43
  • [8] Internet of Things Could Be Low-Cost 'Connectivity Key'
    Mumford, Richard
    [J]. MICROWAVE JOURNAL, 2016, 59 (03) : 49 - 49
  • [9] Low-Cost Automatic Weather Stations in the Internet of Things
    Ioannou, Konstantinos
    Karampatzakis, Dimitris
    Amanatidis, Petros
    Aggelopoulos, Vasileios
    Karmiris, Ilias
    [J]. INFORMATION, 2021, 12 (04)
  • [10] Low-Cost Adaptive Monitoring Techniques for the Internet of Things
    Trihinas, Demetris
    Pallis, George
    Dikaiakos, Marios D.
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2021, 14 (02) : 487 - 501