Spatial structural metrics;
LandTrendr algorithm;
Disturbance and recovery detection;
Dense Landsat time series;
Google Earth Engine;
TEMPORAL PATTERNS;
COVER CHANGE;
CLASSIFICATION;
CHINA;
ENSEMBLE;
DEFORESTATION;
ATTRIBUTION;
DYNAMICS;
TRENDS;
SEGMENTATION;
D O I:
10.1016/j.ecolind.2021.108336
中图分类号:
X176 [生物多样性保护];
学科分类号:
090705 ;
摘要:
Forest disturbance and recovery detection is vital for assessing ecosystem resilience and service to further establish the sustainable ecosystem development. Time series analyses of remote sensing data provide essential and effective methods in such research. Some studies have incorporated spatial structural characteristics to improve the spatial accuracy of detecting forest abrupt disturbances, however, few of them paid attention to the detection of recovery during ecosystem dynamics. To more comprehensively detect forest disturbance and re-covery and explore the effectiveness of incorporating spatial structural metrics in dense Landsat temporal analysis, this study performed the LandTrendr algorithm using the normalized burn ratio (NBR) and the NBR-based spatial structural metrics time series. The spatial structural metrics (i.e., texture metrics) were calculated using the grey-level co-occurrence matrix (GLCM) based on the spatial neighbor of NBR. The methodology was tested using all available Landsat images in a subtropical region in China from 1986 to 2018 on the Google Earth Engine platform. The temporal accuracy of the recovery detection was improved from approximately 20% to 63% after incorporating the GLCM-based texture metrics compared to that using the pixel-based NBR time series. Additionally, the change patterns of forest composition and structure (closed forest to shrub or closed forest to cropland) and changes in the edge pixels in landscape patches can be well depicted by incorporating spatial metrics in dense temporal analyses. Our results highlight that the spatial structural metrics can be integrated to develop more robust detection indicators for the monitoring of forest dynamics and to determine the charac-teristics that are meaningful to ecological assessment and management.
机构:
China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
Wu, Ling
Liu, Xiangnan
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
Liu, Xiangnan
Liu, Meiling
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
Liu, Meiling
Yang, Jinghui
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
Yang, Jinghui
Zhu, Lihong
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
Zhu, Lihong
Zhou, Botian
论文数: 0|引用数: 0|
h-index: 0|
机构:
Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
Zhou, Botian
[J].
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,
2022,
60
机构:
China Univ Geosci, Sch Informat Engn, Beijing, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Wang, Zheng
Wei, Caiyong
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Ningxia Inst Remote Sensing Survey, High Resolut Satellite Remote Sensing Applicat De, Yinchuan, Ningxia, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Wei, Caiyong
Liu, Xiangnan
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Liu, Xiangnan
Zhu, Lihong
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Zhu, Lihong
Yang, Qin
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Yang, Qin
Wang, Qinyu
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Wang, Qinyu
Zhang, Qian
论文数: 0|引用数: 0|
h-index: 0|
机构:
China Univ Geosci, Sch Informat Engn, Beijing, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
Zhang, Qian
Meng, Yuanyuan
论文数: 0|引用数: 0|
h-index: 0|
机构:
Peking Univ, Coll Urban & Environm Sci, Inst Ecol, Beijing, Peoples R China
Peking Univ, Key Lab Earth Surface Proc, Beijing, Peoples R ChinaChina Univ Geosci, Sch Informat Engn, Beijing, Peoples R China