Approximation and spanning in the hardy space, by affine systems

被引:4
|
作者
Bui, H. -Q. [1 ]
Laugesen, R. S.
机构
[1] Univ Canterbury, Dept Math, Christchurch 8020, New Zealand
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
completeness; quasi-interpolation; atomic; scale averaging;
D O I
10.1007/s00365-006-0672-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every function in the Hardy space can be approximated by linear combinations of translates and dilates of a synthesizer psi is an element of L(1) (R(d)), provided only that (psi) over cap (0)=1 and psi satisfies a mild regularity condition. Explicitly, we prove scale averaged approximation for each f is an element of H(1) (R(d)), f(x)=lim(J ->infinity) 1/J (J)Sigma(j=1) Sigma(k is an element of Zd) c(j,k)psi(a(j)x-k), where a(j) is an arbitrary lacunary sequence (such as a(j)=2(j)) and the coefficients c(j,k) are local averages of f. This formula holds in particular if the synthesizer psi is in the Schwartz class, or if it has compact support and belongs to L(p) for some 1<p<infinity. A corollary is a new affine decomposition of H(1) in terms of differences of psi.
引用
收藏
页码:149 / 172
页数:24
相关论文
共 50 条
  • [1] Approximation and Spanning in the Hardy Space, by Affine Systems
    H.-Q. Bui
    R.S. Laugesen
    Constructive Approximation, 2008, 28 : 149 - 172
  • [2] Sobolev spaces and approximation by affine spanning systems
    H.-Q. Bui
    R. S. Laugesen
    Mathematische Annalen, 2008, 341 : 347 - 389
  • [3] Sobolev spaces and approximation by affine spanning systems
    Bui, H. -Q.
    Laugesen, R. S.
    MATHEMATISCHE ANNALEN, 2008, 341 (02) : 347 - 389
  • [4] Constrained Hardy space approximation
    Schneck, Arne
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (08) : 1466 - 1483
  • [5] BEST LINEAR METHODS OF APPROXIMATION AND OPTIMAL ORTHONORMAL SYSTEMS OF THE HARDY SPACE
    Savchuk, V. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2008, 60 (05) : 730 - 743
  • [6] Best linear methods of approximation and optimal orthonormal systems of the Hardy space
    V. V. Savchuk
    Ukrainian Mathematical Journal, 2008, 60 : 730 - 743
  • [7] Approximation of Hardy space on the unit sphere
    余纯武
    陈莘萌
    王昆扬
    戴峰
    ScienceinChina(SeriesF:InformationSciences), 2003, (04) : 309 - 320
  • [8] On the Best Polynomial Approximation in Hardy Space
    Shabozov, M. Sh.
    Malakbozov, Z. Sh.
    RUSSIAN MATHEMATICS, 2022, 66 (11) : 97 - 109
  • [9] Approximation of Hardy space on the unit sphere
    Yu, CW
    Chen, XM
    Wang, KY
    Dai, F
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2003, 46 (04): : 309 - 320
  • [10] Approximation of hardy space on the unit sphere
    Chunwu Yu
    Xinmeng Chen
    Kunyang Wang
    Feng Dai
    Science in China Series F: Information Sciences, 2003, 46 : 309 - 320