Extreme F-Measure Maximization using Sparse Probability Estimates

被引:0
|
作者
Jasinska, Kalina [1 ]
Dembczynski, Krzysztof [1 ]
Busa-Fekete, Robert [2 ]
Pfannschmidt, Karlson [2 ]
Klerx, Timo [2 ]
Huellermeier, Eyke [2 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[2] Paderborn Univ, Dept Comp Sci, D-33098 Paderborn, Germany
关键词
BOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of (macro) F-measure maximization in the context of extreme multi-label classification (XMLC), i.e., multi-label classification with extremely large label spaces. We investigate several approaches based on recent results on the maximization of complex performance measures in binary classification. According to these results, the F-measure can be maximized by properly thresholding conditional class probability estimates. We show that a naive adaptation of this approach can be very costly for XMLC and propose to solve the problem by classifiers that efficiently deliver sparse probability estimates (SPEs), that is, probability estimates restricted to the most probable labels. Empirical results provide evidence for the strong practical performance of this approach.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Regularized F-Measure Maximization for Feature Selection and Classification
    Liu, Zhenqiu
    Tan, Ming
    Jiang, Feng
    [J]. JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2009,
  • [2] Deep F-measure Maximization for End-to-End Speech Understanding
    Sari, Leda
    Hasegawa-Johnson, Mark
    [J]. INTERSPEECH 2020, 2020, : 1580 - 1584
  • [3] Deep F-Measure Maximization in Multi-label Classification: A Comparative Study
    Decubber, Stijn
    Mortier, Thomas
    Dembczynski, Krzysztof
    Waegeman, Willem
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 290 - 305
  • [4] The F-measure for Research Priority
    Ronald Rousseau
    [J]. Journal of Data and Information Science, 2018, (01) : 1 - 18
  • [5] F*: an interpretable transformation of the F-measure
    David J. Hand
    Peter Christen
    Nishadi Kirielle
    [J]. Machine Learning, 2021, 110 : 451 - 456
  • [6] F*: an interpretable transformation of the F-measure
    Hand, David J.
    Christen, Peter
    Kirielle, Nishadi
    [J]. MACHINE LEARNING, 2021, 110 (03) : 451 - 456
  • [7] The F-measure for Research Priority
    Ronald Rousseau
    [J]. JournalofDataandInformationScience, 2018, 3 (01) : 1 - 18
  • [8] Optimizing F-Measure with Non-Convex Loss and Sparse Linear Classifiers
    Chinta, Punya Murthy
    Balamurugan, P.
    Shevade, Shirish
    Murty, M. Narasimha
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [9] Online F-Measure Optimization
    Busa-Fekete, Robert
    Szorenyi, Balazs
    Dembczynski, Krzysztof
    Huellermeier, Eyke
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [10] F-measure maximizing logistic regression
    Okabe, Masaaki
    Tsuchida, Jun
    Yadohisa, Hiroshi
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (05) : 2554 - 2564