Coupling superconducting qubits via a cavity bus

被引:1091
|
作者
Majer, J. [1 ]
Chow, J. M. [1 ]
Gambetta, J. M. [1 ]
Koch, Jens [1 ]
Johnson, B. R. [1 ]
Schreier, J. A. [1 ]
Frunzio, L. [1 ]
Schuster, D. I. [1 ]
Houck, A. A. [1 ]
Wallraff, A. [1 ]
Blais, A. [1 ]
Devoret, M. H. [1 ]
Girvin, S. M. [1 ]
Schoelkopf, R. J. [1 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/nature06184
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine(1,2), and several examples(3-9) of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 50 条
  • [1] Coupling superconducting qubits via a cavity bus
    J. Majer
    J. M. Chow
    J. M. Gambetta
    Jens Koch
    B. R. Johnson
    J. A. Schreier
    L. Frunzio
    D. I. Schuster
    A. A. Houck
    A. Wallraff
    A. Blais
    M. H. Devoret
    S. M. Girvin
    R. J. Schoelkopf
    Nature, 2007, 449 : 443 - 447
  • [2] Coupling superconducting flux qubits at optimal point via dynamic decoupling with the quantum bus
    Wang, Ying-Dan
    Kemp, A.
    Semba, K.
    PHYSICAL REVIEW B, 2009, 79 (02):
  • [3] Coupling spin ensembles via superconducting flux qubits
    Qiu, Yueyin
    Xiong, Wei
    Tian, Lin
    You, J. Q.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [4] Cavity Attenuators for Superconducting Qubits
    Wang, Z.
    Shankar, S.
    Minev, Z. K.
    Campagne-Ibarcq, P.
    Narla, A.
    Devoret, M. H.
    PHYSICAL REVIEW APPLIED, 2019, 11 (01):
  • [5] Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity
    Obada, Abdel-Shafy F.
    Hessian, Hosny A.
    Mohamed, Abdel-Basset A.
    Homid, Ali H.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (05) : 1178 - 1185
  • [6] Preparation of entanglement and Schrodinger cat states of superconducting quantum interference devices qubits via coupling to a microwave cavity
    Yang Wen-Xing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (03) : 643 - 648
  • [7] Coupling Rydberg atoms to superconducting qubits via nanomechanical resonator
    Gao, Ming
    Liu, Yu-xi
    Wang, Xiang-Bin
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [8] Coupling Josephson qubits via a current-biased information bus
    Wei, LF
    Liu, YX
    Nori, F
    EUROPHYSICS LETTERS, 2004, 67 (06): : 1004 - 1010
  • [9] Tunable coupling of superconducting qubits
    Blais, A
    van den Brink, AM
    Zagoskin, AM
    PHYSICAL REVIEW LETTERS, 2003, 90 (12)
  • [10] Josephson vortex interaction mediated by cavity modes: Tunable coupling for superconducting qubits
    Fistul, MV
    Ustinov, AV
    PHYSICAL REVIEW B, 2003, 68 (13)