This paper describes the time evolution of reacting defect assemblies both in bulk metals and on their surfaces. Three areas are treated. The first describes the linear response of reacting assemblies to perturbing fields such as irradiation or temperature change. Alternative long wavelength limits identified here concern: (i) independent diffusion of vacancy- and interstitial-type defects to sinks; and (ii) joint diffusion of defects down a chemical potential gradient, with a separate branch of solutions associated with recombination. The second topic concerns definitions of the chemical potential mu* and temperature T* associated with the defect system itself, as distinct from the. properties of the embedding lattice. The utility of these quantities is illustrated by examples including those pertaining to rapid temperature change. mu* and T differ from the lattice values mu, T, to an extent that determines possible energy and particle transfer in such processes as nucleation of new sinks and precipitation from the defeat assembly. The role of these quantities in relaxation modes is clarified. Finally, an appendix discusses an approximate model of defect behavior in the bulk, and a speculative discussion of defect behavior on surfaces, both positing homologous properties of the defect systems in metals, when scaled to the melting temperature T-m. These characteristics of a standard metal and a standard close-packed metal surface are employed in the text to identify and contrast typical behaviors of the bulk and surface defect systems of metals. Universal properties that follow from these models are discussed in a second appendix.