Optimal Control for Quantum Driving of Two-Level Systems

被引:0
|
作者
Qi, Xiao-Qiu [1 ,2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Hubei, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Quantum driving; Optimal control function; Pontryagin maximum principle;
D O I
10.1007/s10773-017-3538-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the optimal quantum control of two-level systems is studied by the decompositions of SU(2). Using the Pontryagin maximum principle, the minimum time of quantum control is analyzed in detail. The solution scheme of the optimal control function is given in the general case. Finally, two specific cases, which can be applied in many quantum systems, are used to illustrate the scheme, while the corresponding optimal control functions are obtained.
引用
收藏
页码:36 / 41
页数:6
相关论文
共 50 条
  • [1] Optimal Control for Quantum Driving of Two-Level Systems
    Xiao-Qiu Qi
    International Journal of Theoretical Physics, 2018, 57 : 36 - 41
  • [2] Optimal control of two-level quantum systems
    D'Alessandro, D
    Dahleh, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (06) : 866 - 876
  • [3] Optimal control of two-level quantum systems
    D'Alessandro, D
    Dahleh, M
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 3893 - 3897
  • [4] Robust optimal control of two-level quantum systems
    Van Damme, L.
    Ansel, Q.
    Glaser, S. J.
    Sugny, D.
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [5] Time optimal control of two-level quantum systems
    Jafarizadeh, M. A.
    Naghdi, F.
    Bazrafkan, M. R.
    PHYSICS LETTERS A, 2020, 384 (29)
  • [6] Driving at the Quantum Speed Limit: Optimal Control of a Two-Level System
    Hegerfeldt, Gerhard C.
    PHYSICAL REVIEW LETTERS, 2013, 111 (26)
  • [7] Geometric driving of two-level quantum systems
    Ying, Zu-Jian
    Gentile, Paola
    Pablo Baltanas, Jose
    Frustaglia, Diego
    Ortix, Carmine
    Cuoco, Mario
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [8] Geometric optimal control and two-level dissipative quantum systems
    Bonnard, Bernard
    Sugny, Dominique
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1053 - 1080
  • [9] Quantum control of two-level systems
    Rosas-Ortiz, O
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON SQUEEZED STATES AND UNCERTAINTY RELATIONS, 2003, : 360 - 365
  • [10] Time-optimal quantum control of nonlinear two-level systems
    Chen, Xi
    Ban, Yue
    Hegerfeldt, Gerhard C.
    PHYSICAL REVIEW A, 2016, 94 (02)