Numerical dispersion and numerical loss in explicit finite-difference time-domain methods in lossy media

被引:11
|
作者
Sun, GL [1 ]
Trueman, CW [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2A7, Canada
关键词
computational electromagnetics; finite-difference time-domain method (FDTD); numerical anisotropy; numerical dispersion; numerical loss;
D O I
10.1109/TAP.2005.858846
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The numerical dispersion relations of finite-difference time-domain (FDTD) methods have been analyzed extensively in lossless media. This paper investigates numerical dispersion and loss for Yee's FDTD in lossy media. It is shown that: the numerical velocity can be smaller or larger than the physical velocity; there is no "magic time step size" in lossy media; and the numerical loss is smallest at the Courant limit. It is shown that the numerical loss is always larger than its physical value, and so Yee's FDTD overestimates the absorption of electromagnetic energy in lossy media. The numerical velocity anisotropy can be positive or negative, but the numerical loss anisotropy is always positive. The anisotropies in the three-dimensional (3-D) case are usually larger than those in the 2-D case. Numerical experiments in 1-D are shown to agree with the theoretical prediction.
引用
收藏
页码:3684 / 3690
页数:7
相关论文
共 50 条
  • [1] Suppression of numerical anisotropy and dispersion with optimized finite-difference time-domain methods
    Sun, GL
    Trueman, CW
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (12) : 4121 - 4128
  • [2] Finite-difference time-domain methods
    不详
    [J]. NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [3] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    [J]. Nature Reviews Methods Primers, 3
  • [4] Numerical Accuracy of Finite-Difference Time-Domain Formulations for Magnetized Plasma
    Cho, Jeahoon
    Park, Min-Seok
    Jung, Kyung-Young
    [J]. JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, 2022, 22 (03): : 195 - 201
  • [5] Finite-difference, time-domain analysis of lossy transmission lines
    Roden, JA
    Paul, CR
    Smith, WT
    Gedney, SD
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1996, 38 (01) : 15 - 24
  • [6] Efficient method to reduce the numerical dispersion in the alternating direction implicit finite-difference time-domain algorithm
    Zhao, Anxing
    Huang, Binke
    Jiang, Yansheng
    Wang, Wenbing
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2008, 42 (02): : 209 - 212
  • [7] Numerical solution of Maxwell equations by a finite-difference time-domain method in a medium with frequency and spatial dispersion
    Potravkin, N. N.
    Perezhogin, I. A.
    Makarov, V. A.
    [J]. PHYSICAL REVIEW E, 2012, 86 (05):
  • [8] Numerical dispersion reduction approach for finite-difference methods
    Chen, Guangzhi
    Yang, Shunchuan
    Ren, Qiang
    Cui, Shuo
    Su, Donglin
    [J]. ELECTRONICS LETTERS, 2019, 55 (10) : 591 - 592
  • [9] Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation
    Ostashev, VE
    Wilson, DK
    Liu, LB
    Aldridge, DF
    Symons, NP
    Marlin, D
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2005, 117 (02): : 503 - 517
  • [10] Numerical analysis of polarization gratings using the finite-difference time-domain method
    Oh, Chulwoo
    Escuti, Michael J.
    [J]. PHYSICAL REVIEW A, 2007, 76 (04):