We study the hardness of the optimal jug measuring problem. By proving tight lower and upper bounds on the minimum number of measuring steps required, we reduce an inapproximable NP-hard problem (i.e., the shortest GCD multiplier problem [G. Havas, J.-P. Seifert, The Complexity of the Extended GCD Problem, in: LNCS, vol. 1672, Springer, 1999]) to it. It follows that the optimal jug measuring problem is NP-hard and so is the problem of approximating the minimum number of measuring steps within a constant factor. Along the way, we give a polynomial-time approximation algorithm with an exponential error based on the well-known LLL basis reduction algorithm. (C) 2008 Elsevier B.V. All rights reserved.