Computing Hierarchical Complexity of the Brain from Electroencephalogram Signals: A Graph Convolutional Network-based Approach

被引:21
|
作者
Wadhera, Tanu [1 ]
Mahmud, Mufti [2 ]
机构
[1] Indian Inst Informat Technol, Sch Elect, Una 177209, Himachal Prades, India
[2] Nottingham Trent Univ, Dept Comp Sci, MTIF, CIRC, Clifton Lane, Nottingham NG11 8NS, England
关键词
Graph network; EEG; visible graph; machine learning; deep learning; classification;
D O I
10.1109/IJCNN55064.2022.9892799
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain structures and their varying connectivity patterns form complex networks that provide rich information to help in understanding high-order cognitive functions and their relationship with low-order sensory-motor processing. The brains with pathological conditions such as Autism Spectrum Disorder (ASD) exhibit diverse modular networks organised in hierarchies with small-world properties. However, much of the network hierarchy has not been carefully examined in ASD. Different machine learning architectures including Convolutional Neural Networks (CNN) have failed to extract related complex neuronal features and to exploit the hierarchical neural connectivity present at different electrode sites of the electroencephalogram (EEG) data. The presented work has addressed the mentioned limitations by developing a two-layered Visible-Graph Convolutional Network (VGCN) which projects each channel's EEG sample onto nodes of a graph with weighted edges formulated as per the hierarchical visibility among nodes. The proposed model has been applied to EEG signals obtained from ASD and Typical Individuals (TD) and has achieved a classification accuracy of 93.78% in comparison to state-of-the-art methods, including support vector machines (89.52%), deep neural network (78.21%), convolutional network (83.88%) and graph network (86.45%). Other performance metrics such as precision, recall, F1-score and Mathews correlation coefficient showed similar results, hence, supporting the proposed model's strengths. This evidence suggests that graph networks can confidently reveal hierarchical imbalances in the brain functioning of ASD.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The convolutional neural network approach from electroencephalogram signals in emotional detection
    Turk, Omer
    Ozerdem, Mehmet Sirac
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (20):
  • [2] AMYGNN: A Graph Convolutional Neural Network-Based Approach for Predicting Amyloid Formation from Polypeptides
    Yang, Zuojun
    Wu, Yuhan
    Liu, Hao
    He, Li
    Deng, Xiaoyuan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (05) : 1751 - 1762
  • [3] Graph convolutional network-based deep feature learning for cardiovascular disease recognition from heart sound signals
    Rezaee, Khosro
    Khosravi, Mohammad R.
    Jabari, Mohammad
    Hesari, Shabnam
    Anari, Maryam Saberi
    Aghaei, Fahimeh
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 11250 - 11274
  • [4] A novel hierarchical network-based approach to unveil the complexity of functional microbial genome
    Lu, Yuntao
    Li, Qi
    Li, Tao
    BMC GENOMICS, 2024, 25 (01):
  • [5] Epileptic seizure detection from electroencephalogram (EEG) signals using linear graph convolutional network and DenseNet based hybrid framework
    Jibon, Ferdaus Anam
    Miraz, Mahadi Hasan
    Khandaker, Mayeen Uddin
    Rashdan, Mostafa
    Salman, Mohammad
    Tasbir, Alif
    Nishar, Nazibul Hasan
    Siddiqui, Fazlul Hasan
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (03)
  • [6] Graph Convolutional Network-Based Repository Recommendation System
    Liao, Zhifang
    Cao, Shuyuan
    Li, Bin
    Liu, Shengzong
    Zhang, Yan
    Yu, Song
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 175 - 196
  • [7] Hierarchical graph learning with convolutional network for brain disease prediction
    Tong Liu
    Fangqi Liu
    Yingying Wan
    Rongyao Hu
    Yongxin Zhu
    Li Li
    Multimedia Tools and Applications, 2024, 83 : 46161 - 46179
  • [8] Hierarchical graph learning with convolutional network for brain disease prediction
    Liu, Tong
    Liu, Fangqi
    Wan, Yingying
    Hu, Rongyao
    Zhu, Yongxin
    Li, Li
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 46161 - 46179
  • [9] Convolutional neural network-based retrieval of Raman signals from CARS spectra
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    OPTICS CONTINUUM, 2022, 1 (06): : 1324 - 1339
  • [10] A Graph Convolutional Network-Based Deep Reinforcement Learning Approach for Resource Allocation in a Cognitive Radio Network
    Zhao, Di
    Qin, Hao
    Song, Bin
    Han, Beichen
    Du, Xiaojiang
    Guizani, Mohsen
    SENSORS, 2020, 20 (18) : 1 - 23