Covariant integral quantization of the unit disk

被引:6
|
作者
del Olmo, M. A. [1 ,2 ]
Gazeau, J. P. [3 ,4 ]
机构
[1] Univ Valladolid, Dept Fis Teor Atom & Opt, Paseo Belen 7, E-47011 Valladolid, Spain
[2] Univ Valladolid, IMUVA Math Res Inst, Paseo Belen 7, E-47011 Valladolid, Spain
[3] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[4] Univ Paris, CNRS, APC, UMR 7164,Astroparticule & Cosmol, F-75013 Paris, France
关键词
GENERAL PHASE-SPACE; QUANTUM-MECHANICS; NONCOMMUTING OPERATORS; DEFORMATION-THEORY; ANTI-DESITTER; CALCULUS;
D O I
10.1063/1.5128066
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We implement a SU(1, 1) covariant integral quantization of functions on the unit disk. The latter can be viewed as the phase space for the motion of a "massive" test particle on (1+1)-anti-de Sitter space-time, and the relevant unitary irreducible representations of SU(1, 1) corresponding to the quantum version of such motions are found in the discrete series and its lower limit. Our quantization method depends on the choice of a weight function on the phase space in such a way that different weight functions yield different quantizations. For instance, the Perelomov coherent states quantization is derived from a particular choice. Semi-classical portraits or lower symbols of main physically relevant operators are determined, and the statistical meaning of the weight function is discussed. Published under license by AIP Publishing.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Covariant affine integral quantization(s)
    Gazeau, Jean Pierre
    Murenzi, Romain
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
  • [2] Worldsheet covariant path integral quantization of strings
    Van Tonder, Andre
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (32): : 6525 - 6574
  • [3] Covariant Hamiltonian Field Theory: Path Integral Quantization
    D. Bashkirov
    G. Sardanashvily
    G. Sardanashvily
    International Journal of Theoretical Physics, 2004, 43 : 1317 - 1333
  • [4] Covariant Hamiltonian field theory: Path integral quantization
    Bashkirov, D
    Sardanashvily, G
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (05) : 1317 - 1333
  • [5] 2-D covariant affine integral quantization(s)
    Jean-Pierre Gazeau
    Tomoi Koide
    Romain Murenzi
    Advances in Operator Theory, 2020, 5 : 901 - 935
  • [6] 2-D covariant affine integral quantization(s)
    Gazeau, Jean-Pierre
    Koide, Tomoi
    Murenzi, Romain
    ADVANCES IN OPERATOR THEORY, 2020, 5 (03) : 901 - 935
  • [7] Correction to: 2-D covariant affine integral quantization(s)
    Jean-Pierre Gazeau
    Tomoi Koide
    Romain Murenzi
    Advances in Operator Theory, 2022, 7
  • [8] Covariant Integral Quantization of the Semi-Discrete SO(3)-Hypercylinder
    Gazeau, Jean-Pierre
    Murenzi, Romain
    SYMMETRY-BASEL, 2023, 15 (11):
  • [9] E(2) -covariant integral quantization of the motion on the circle and its classical limit
    Fresneda, Rodrigo
    Gazeau, Jean Pierre
    Noguera, Diego
    GEOMETRIC METHODS IN PHYSICS XXXVII, 2020, : 85 - 91
  • [10] Covariant quantization of the superstring
    Berkovits, N
    STRING THEORY, 2002, 607 : 30 - 40