Deep long short-term memory (LSTM) networks for ultrasonic-based distributed damage assessment in concrete

被引:16
|
作者
Ranjbar, Iman [1 ]
Toufigh, Vahab [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
关键词
Concrete damage assessment; Ultrasonic; Deep learning; Long short-term memory; LSTM; k-means clustering; Dynamic time warping; MEANS CLUSTERING-ALGORITHM; GEOPOLYMER CONCRETE; COMPRESSIVE STRENGTH; WAVE-PROPAGATION; NEURAL-NETWORKS; PULSE VELOCITY; PREDICTION; FAULT;
D O I
10.1016/j.cemconres.2022.107003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presented a comprehensive study on developing a deep learning approach for ultrasonic-based distributed damage assessment in concrete. In particular, two architectures of long short-term memory (LSTM) networks were proposed: (1) a classification model to evaluate the concrete's damage stage; (2) a regression model to predict the concrete's absorbed energy ratio. Two input configurations were considered and compared for both architectures: (1) the input was a single signal; (2) the inputs were four signals from four sides of the specimen. A comprehensive experimental study was designed and conducted on ground granulated blast furnace slag-based geopolymer concrete, providing a total number of 1920 ultrasonic signals from different damage stages. Unsupervised k-means clustering based on dynamic time warping (DTW) was implemented to cluster the ultrasonic response signals from the experimental study into five defined damage stages. The proposed LSTM architectures were successfully trained and validated using the experimental dataset. Moreover, the performance of the LSTM models was evaluated in noisy environments. The proposed LSTM models in this study used the time series of response signals for damage assessment. Therefore, the damage-sensitive features were automatically extracted by the LSTM layers. For comparison, a set of linear and nonlinear ultrasonic features were manually extracted from the response signals as damage-sensitive features, and their sensitivity to damage was investigated. Artificial neural networks were implemented to combine the extracted features and perform the same tasks defined for LSTM models. Comparing the two approaches showed that using the time series of ultrasonic response signals as the input of LSTM models outperforms the idea of using the manually extracted features. This study showed that the presented method is efficient, reliable, and promising for nondestructive evaluation of damage in concrete.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Long Short-Term Memory (LSTM) Deep Neural Networks in Energy Appliances Prediction
    Kouziokas, Georgios N.
    2019 PANHELLENIC CONFERENCE ON ELECTRONICS AND TELECOMMUNICATIONS (PACET2019), 2019, : 162 - 166
  • [2] Comparing Long Short-Term Memory (LSTM) and bidirectional LSTM deep neural networks for power consumption prediction
    da Silva, Davi Guimaraes
    Meneses, Anderson Alvarenga de Moura
    ENERGY REPORTS, 2023, 10 : 3315 - 3334
  • [3] Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
    Yu, Qiutong
    Tolson, Bryan A.
    Shen, Hongren
    Han, Ming
    Mai, Juliane
    Lin, Jimmy
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (09) : 2107 - 2122
  • [4] Deep Long Short-Term Memory Networks for Speech Recognition
    Chien, Jen-Tzung
    Misbullah, Alim
    2016 10TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2016,
  • [5] Niederschlags-Abfluss-Modellierung mit Long Short-Term Memory (LSTM)Rainfall-Runoff modeling with Long Short-Term Memory Networks (LSTM)—an overview
    Frederik Kratzert
    Martin Gauch
    Grey Nearing
    Sepp Hochreiter
    Daniel Klotz
    Österreichische Wasser- und Abfallwirtschaft, 2021, 73 (7-8) : 270 - 280
  • [6] Simplified Gating in Long Short-term Memory (LSTM) Recurrent Neural Networks
    Lu, Yuzhen
    Salem, Fathi M.
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 1601 - 1604
  • [7] Long Short-Term Memory (LSTM) Neural Networks Applied to Energy Disaggregation
    Tongta, Anawat
    Chooruang, Komkrit
    2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [8] Hydrological concept formation inside long short-term memory (LSTM) networks
    Lees, Thomas
    Reece, Steven
    Kratzert, Frederik
    Klotz, Daniel
    Gauch, Martin
    De Bruijn, Jens
    Kumar Sahu, Reetik
    Greve, Peter
    Slater, Louise
    Dadson, Simon J.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (12) : 3079 - 3101
  • [9] Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)
    Hopp, Daniel
    JOURNAL OF OFFICIAL STATISTICS, 2022, 38 (03) : 847 - 873
  • [10] Applications of Long Short-Term Memory (LSTM) Networks in Polymeric Sciences: A Review
    Malashin, Ivan
    Tynchenko, Vadim
    Gantimurov, Andrei
    Nelyub, Vladimir
    Borodulin, Aleksei
    POLYMERS, 2024, 16 (18)