Data-Driven Machine Learning for Wind Plant Flow Modeling

被引:10
|
作者
King, R. N. [1 ]
Adcock, C. [2 ]
Annoni, J. [1 ]
Dykes, K. [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
ADJOINT;
D O I
10.1088/1742-6596/1037/7/072004
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, we introduce a data-driven machine learning framework for improving the accuracy of wind plant flow models by learning turbulence model corrections based on data from higher-fidelity simulations. First, a high-dimensional PDE-constrained optimization problem is solved using gradient-based optimization with adjoints to determine optimal eddy viscosity fields that improve the agreement of a medium-fidelity Reynolds-Averaged Navier Stokes (RANS) model with large eddy simulations (LES). A supervised learning problem is then constructed to find general, predictive representations of the optimal turbulence closure. A machine learning technique using Gaussian process regression is trained to predict the eddy viscosity field based on local RANS flow field information like velocities, pressures, and their gradients. The Gaussian process is trained on LES simulations of a single turbine and implemented in a wind plant simulation with 36 turbines. We show improvement over the baseline RANS model with the machine learning correction, and demonstrate the ability to provide accurate confidence levels for the corrections that enable future uncertainty quantification studies.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Data-driven wind turbine wake modeling via probabilistic machine learning
    Renganathan, S. Ashwin
    Maulik, Romit
    Letizia, Stefano
    Iungo, Giacomo Valerio
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08): : 6171 - 6186
  • [2] Data-driven wind turbine wake modeling via probabilistic machine learning
    S. Ashwin Renganathan
    Romit Maulik
    Stefano Letizia
    Giacomo Valerio Iungo
    Neural Computing and Applications, 2022, 34 : 6171 - 6186
  • [3] Data-driven modeling of technology acceptance: A machine learning perspective
    Alwabel, Asim Suleman A.
    Zeng, Xiao-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [4] A data-driven machine learning framework for modeling of turbulent mixing flows
    Li, Kun
    Savari, Chiya
    Sheikh, Hamzah A.
    Barigou, Mostafa
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [5] A data-driven machine learning approach for yaw control applications of wind farms
    Santoni, Christian
    Zhang, Zexia
    Sotiropoulos, Fotis
    Khosronejad, Ali
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (05)
  • [6] A data-driven machine learning approach for yaw control applications of wind farms
    Christian Santoni
    Zexia Zhang
    Fotis Sotiropoulos
    Ali Khosronejad
    Theoretical & Applied Mechanics Letters, 2023, 13 (05) : 341 - 352
  • [7] Industrial Data-driven Plant Optimization Modeling
    Ohara, Kenichi
    Aoki, Jun
    Kamada, Kenichi
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 569 - 574
  • [8] Data-driven battery electrode production process modeling enabled by machine learning
    Tan, Changbai
    Ardanese, Raffaello
    Huemiller, Erik
    Cai, Wayne
    Yang, Houssen
    Bracey, Jennifer
    Pozzato, Gabriele
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 316
  • [9] A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates
    Valipour, Mohammad
    Sefidkouhi, Mohammad Ali Gholami
    Raeini-Sarjaz, Mahmoud
    Guzman, Sandra M.
    ATMOSPHERE, 2019, 10 (06)
  • [10] Data-Driven Geothermal Reservoir Modeling: Estimating Permeability Distributions by Machine Learning
    Suzuki, Anna
    Fukui, Ken-ichi
    Onodera, Shinya
    Ishizaki, Junichi
    Hashida, Toshiyuki
    GEOSCIENCES, 2022, 12 (03)