Organic-Salt-Assisted Crystal Growth and Orientation of Quasi-2D Ruddlesden-Popper Perovskites for Solar Cells with Efficiency over 19%

被引:190
|
作者
Lai, Hongtao [1 ,2 ]
Lu, Di [1 ,2 ]
Xu, Zhiyuan [1 ,2 ]
Zheng, Nan [3 ]
Xie, Zengqi [3 ]
Liu, Yongsheng [1 ,2 ,4 ]
机构
[1] Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Chem, Inst Polymer Chem, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[3] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[4] Nankai Univ, Renewable Energy Convers & Storage Ctr RECAST, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
2D perovskites; mobility; solar cells; spacer cations; trap density; HALIDE PEROVSKITES; GUANIDINIUM; MIGRATION; BANDGAP; LAYERS;
D O I
10.1002/adma.202001470
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quasi-2D Ruddlesden-Popper (RP) perovskite solar cells (PSCs) have drawn significant attention due to their appealing environmental stability compared to their 3D counterparts. However, the relatively low power conversion efficiency (PCE) greatly limits their applications. Here, high photovoltaic performance is demonstrated for quasi-2D RP PSCs using 2-thiophenemethylammonium as spacer with nominaln-value of 5, which is based on the stoichiometry of the precursors. The incorporation of formamidinium (FA) in quasi-2D RP perovskites reduces the bandgap and improves the light absorption ability, resulting in enlarged photocurrent and an increased PCE of 16.18%, which is higher than that of reported analogous methylammonium (MA)-based quasi-2D PSC (approximate to 15%). A record high PCE of 19.06% is further demonstrated by using an organic salt, namely, 4-(trifluoromethyl)benzylammonium iodide, assisted crystal growth (OACG) technique, which can induce the crystal growth and orientation, tune the surface energy levels, and suppress the charge recombination losses. More importantly, the devices based on OACG-processed quasi-2D RP perovskites show remarkable environmental stability and thermal stability, for example, the PCE retaining approximate to 96% of its initial value after storage at 80 degrees C for 576 h, while only approximate to 37% of the original efficiency left for FAPbI(3)-based 3D PSCs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High Efficiency Quasi-2D Ruddlesden-Popper Perovskite Solar Cells
    Caiazzo, Alessandro
    Janssen, Rene A. J.
    ADVANCED ENERGY MATERIALS, 2022, 12 (41)
  • [2] Phase Engineering in Quasi-2D Ruddlesden-Popper Perovskites
    Chen, Yani
    Yu, Shuang
    Sun, Yong
    Liang, Ziqi
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (10): : 2627 - +
  • [3] Organic Salt-Assisted Growth and Orientation of Two-Dimensional Ruddlesden-Popper Perovskites for Efficient Solar Cells
    Liu, Yongsheng
    Lai, Hongtao
    Lu, Di
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 96 - 97
  • [4] Inhibiting the Growth of 1D Intermediates in Quasi-2D Ruddlesden-Popper Perovskites
    Zhang, Weichuan
    Wu, Xianxin
    Cheng, Qian
    Wang, Boxin
    Zafar, Saud Uz
    Han, Bing
    Zhang, Jianqi
    Zhang, Hong
    Liu, Xinfeng
    Zhang, Yuan
    Zhou, Huiqiong
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (49)
  • [5] Efficient and Stable Quasi-2D Ruddlesden-Popper Perovskite Solar Cells by Tailoring Crystal Orientation and Passivating Surface Defects
    Kim, Ju-Hyeon
    Oh, Chang-Mok
    Hwang, In-Wook
    Kim, Jehan
    Lee, Changhoon
    Kwon, Sooncheol
    Ki, Taeyoon
    Lee, Sanseong
    Kang, Hongkyu
    Kim, Heejoo
    Lee, Kwanghee
    ADVANCED MATERIALS, 2023, 35 (31)
  • [6] Temperature-dependent Luminescence Spectra of Ruddlesden-Popper Quasi-2D Perovskites
    Du Z.
    Du H.
    Hu Z.
    Luo J.
    Huang S.
    Zhan Z.
    Li Q.
    Liu Z.
    Du J.
    Leng Y.
    Faguang Xuebao/Chinese Journal of Luminescence, 2023, 44 (04): : 569 - 578
  • [7] Quasi-2D Ruddlesden-Popper Lead Halide Perovskites: How Edge Matters
    Maiti, Abhishek
    Pal, Amlan J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (42): : 9875 - 9882
  • [8] Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells
    Yan, Linfang
    Ma, Junjie
    Li, Pengwei
    Zang, Shuangquan
    Han, Liyuan
    Zhang, Yiqiang
    Song, Yanlin
    ADVANCED MATERIALS, 2022, 34 (07)
  • [9] High Efficiency Perovskite Solar Cells Employing Quasi-2D Ruddlesden-Popper/Dion-Jacobson Heterojunctions
    Li, Kang
    Yue, Shengli
    Li, Xing
    Ahmad, Nafees
    Cheng, Qian
    Wang, Boxin
    Zhang, Xuning
    Li, Shilin
    Li, Yanxun
    Huang, Gaosheng
    Kang, Hui
    Yue, Tong
    Zafar, Saud Uz
    Zhou, Huiqiong
    Zhu, Lina
    Zhang, Yuan
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (21)
  • [10] Phenylformamidinium-enabled quasi-2D Ruddlesden-Popper perovskite solar cells with improved stability
    Xingcheng Li
    Wanpei Hu
    Yanbo Shang
    Xin Yu
    Xue Wang
    Weiran Zhou
    Mingtai Wang
    Qun Luo
    Chang-Qi Ma
    Yalin Lu
    Shangfeng Yang
    Journal of Energy Chemistry, 2022, 66 (03) : 680 - 688