Template-Driven Phase Selective Formation of Metallic 1T-MoS2 Nanoflowers for Hydrogen Evolution Reaction

被引:48
|
作者
Venkateshwaran, Selvaraj [1 ,2 ]
Kumar, Sakkarapalayam Murugesan Senthil [1 ,2 ]
机构
[1] CSIR Cent Electrochem Res Inst CECRI, Mats Electrochem Div, Karaikkudi 630003, Tamil Nadu, India
[2] Acad Sci & Innovat Res AcSIR, CSIR Cent Electrochem Res Inst CECRI Campus, Karaikkudi 630003, Tamil Nadu, India
来源
关键词
1T-MoS2; SBA-15; mild-nanocasting; phase selectivity; intercalation; HER; MOS2; NANOSHEETS; ELECTROCATALYTIC HYDROGEN; MOLYBDENUM-DISULFIDE; EFFICIENT; 1T; CATALYSIS; DESIGN;
D O I
10.1021/acssuschemeng.8b04335
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exploration of MoS2 based catalyst has been growing over the recent years, mainly focusing on fine-tuning the metallic phases for improved catalytic activity in the hydrogen evolution reaction (HER). Considering the synthesis of MoS2, the 2H phase (trigonal prismatic, D-3h) is more stable than the 1T phase (octahedral, Oh). Still, with the increased electronic conductivity, hydrophilic nature, and the presence of electrochemically active basal planes, the IT phase shows enhanced catalytic activity compared to the 2H phase which shows semiconducting nature with only edge sites being active. So far, one of the best ways to synthesize 1T-MoS2 is the alkali metal exfoliation, but a setback to this method is that there are many issues like intercalation of alkali ions, self-heating, and pyrophoric Moreover it requires undesirable and expensive organic solvent to produce IT phase. The aqueous phase synthesis of 1T-MoS2 is still hampered by the low extent of IT enrichment and reproducibility. Here, in contrast, by the introduction of Santa Barbara Amorphous-15 (SBA-15) as a template, the selective formation of the 1T phase in MoS2 over 90% has been achieved. This is the very first observation of phase selectivity behavior of SBA-15 for the entire layered materials. Moreover, the reproducibility of this methodology is also ensured by repeating the experiment 14 times. Besides, the storage stability of the IT-MoS2 at room temperature (RT) has been analyzed by storing it at RT over 30 days, which is essential for commercialize the methodology. Therefore, this reporting methodology resolving all the existing problems in aqueous phase synthesis of 1T-MoS2 such as enhancement in the IT phase, reproducibility, room temperature storage stability, and large scale production. This template driven 1T-MoS2 has demonstrated an excellent activity, and to attain 10 mA cm(-2), it required just 252 mV with a low Tafel slope value of 45 mV/decade. These findings will pave a way to other similar 2D materials for selective enrichment in the IT phase, which is the more desirable phase for energy storage and conversion devices at present.
引用
收藏
页码:2008 / 2017
页数:19
相关论文
共 50 条
  • [1] Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles
    Tang, Qing
    Jiang, De-en
    ACS CATALYSIS, 2016, 6 (08): : 4953 - 4961
  • [2] Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction
    Attanayake, Nuwan H.
    Thenuwara, Akila C.
    Patra, Abhirup
    Aulin, Yaroslav V.
    Tran, Thi M.
    Chakraborty, Himanshu
    Borguet, Eric
    Klein, Michael L.
    Perdew, John P.
    Strongin, Daniel R.
    ACS ENERGY LETTERS, 2018, 3 (01): : 7 - 13
  • [3] Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution
    Tang, Jun
    Huang, Jinzhao
    Ding, Dianjin
    Zhang, Sixuan
    Deng, Xiaolong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (94) : 39771 - 39795
  • [4] 1T-MoS2 Enriched Hierarchical MoS2/MoO3 Produced by Phase Transformation for Efficient Hydrogen Evolution Reaction
    Zhang, Xiao
    Lu, Yi
    Liu, Yi-Xuan
    Tian, Ge
    Yang, Xiao-Yu
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (05)
  • [5] Effect of the interlayer spacing and charge of 1T-MoS2 on the electrocatalytic activity for the hydrogen evolution reaction
    Attanayake, Nuwan
    Thenuwara, Akila
    Patra, Abhirup
    Aulin, Yaroslav
    Chakraborty, Himanshu
    Borguet, Eric
    Klein, Michael
    Perdew, John
    Strongin, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [6] Realization of Wafer-Scale 1T-MoS2 Film for Efficient Hydrogen Evolution Reaction
    Kim, Hyeong-U.
    Kim, Mansu
    Seok, Hyunho
    Park, Kyu-Young
    Moon, Ji-Yun
    Park, Jonghwan
    An, Byeong-Seon
    Jung, Hee Joon
    Dravid, Vinayak P.
    Whang, Dongmok
    Lee, Jae-Hyun
    Kim, Taesung
    CHEMSUSCHEM, 2021, 14 (05) : 1344 - 1350
  • [7] In situ Integration of a Metallic 1T-MoS2/CdS Heterostructure as a Means to Promote Visible-Light-Driven Photocatalytic Hydrogen Evolution
    Liu, Qin
    Shang, Qichao
    Khalil, Adnan
    Fang, Qi
    Chen, Shuangming
    He, Qun
    Xiang, Ting
    Liu, Daobin
    Zhang, Qun
    Luo, Yi
    Song, Li
    CHEMCATCHEM, 2016, 8 (16) : 2614 - 2619
  • [8] Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution
    Yichao Huang
    Yuanhui Sun
    Xueli Zheng
    Toshihiro Aoki
    Brian Pattengale
    Jier Huang
    Xin He
    Wei Bian
    Sabrina Younan
    Nicholas Williams
    Jun Hu
    Jingxuan Ge
    Ning Pu
    Xingxu Yan
    Xiaoqing Pan
    Lijun Zhang
    Yongge Wei
    Jing Gu
    Nature Communications, 10
  • [9] 1T-MoS2/C composite as an efficient electrocatalyst for hydrogen evolution reaction under alkaline condition
    Zhu, Wenjun
    Zhang, Bofeng
    Shi, Chengfei
    Cui, Yang
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 185
  • [10] Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction
    Wei, Helei
    Tan, Aidong
    Liu, Wenbo
    Piao, Jinhua
    Wan, Kai
    Liang, Zhenxing
    Xiang, Zhipeng
    Fu, Zhiyong
    CATALYSTS, 2022, 12 (09)