Structure modulated amorphous/crystalline WO3 nanoporous arrays with superior electrochromic energy storage performance

被引:68
|
作者
Shi, Yingdi [1 ,2 ]
Sun, Mingjun [1 ,2 ]
Zhang, Yong [1 ,2 ]
Cui, Jiewu [1 ,2 ]
Wang, Yan [1 ,2 ]
Shu, Xia [1 ,2 ]
Qin, Yongqiang [1 ,2 ]
Tan, Hark Hoe [3 ]
Liu, Jiaqin [1 ,4 ]
Wu, Yucheng [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[2] Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Peoples R China
[3] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
[4] Hefei Univ Technol, Inst Ind & Equipment Technol, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid nanoarrays; Crystalline; Amorphous; Electrochromism; Capacitance; TUNGSTEN-OXIDE FILMS; SMART WINDOWS; THIN-FILMS; NANOROD ARRAYS; CRYSTALLINE; MORPHOLOGY; DEVICES; GROWTH; NANOSTRUCTURES; MECHANISM;
D O I
10.1016/j.solmat.2020.110579
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, porous bilayer hybrid WO3 nanoarray devices are constructed in which the active materials are composed of a crystalline WO3 nanobowl arrays layer modified by a nanoholey amorphous WO3 layer. The hybrid nanoarrays exhibit outstanding electrochromic performance with high color contrast in both visible and near infrared regions (93.9% at 633 nm, 89.6% at 1500 nm), fast response speed (3.0 s for coloring and 3.6 s for bleaching), exceptional cycling stability (95.4% contrast retention after 10,000 cycles) and decent coloring efficiency (92.3 cm(2)C(-1)) at low colored/bleached potentials (-1.0/1.0 V). In addition, the hybrid nanoarrays display high areal capacitance (47.4 mF/cm(2)), superior rate capability and cyclic stability (areal capacitance remains 84.0% after 2000 cycles). An electrochromic supercapacitor nanodevice is constructed based on the excellent electrochromic and capacitive performance of the hybrid nanoarrays. The enhanced electrochemical properties can be ascribed to the synergistic effect between the unique top amorphous layer structure and the underlying crystalline WO3 layer. In addition, oxygen partial pressure plays a crucial role in modulating the microstructure of the amorphous layer as well as electrochemical performance of the nanodevice. The obtained hybrid WO3 nanoarrays as well as the structure modulation promise great potential in developing high quality smart energy-efficient devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties
    Ou, Jian Zhen
    Balendhran, Sivacarendran
    Field, Matthew R.
    McCulloch, Dougal G.
    Zoolfakar, Ahmad Sabirin
    Rani, Rozina A.
    Zhuiykov, Serge
    O'Mullane, Anthony P.
    Kalantar-zadeh, Kourosh
    NANOSCALE, 2012, 4 (19) : 5980 - 5988
  • [2] Apparent mismatch between XAFS and XRD structure of crystalline and amorphous electrochromic WO3
    Michalowicz, Alain
    Moscovici, Jacques
    Rougier, Aline
    Laruelle, Stephane
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C67 - C67
  • [3] Improvement in electrochromic response for an amorphous/crystalline WO3 double layer
    Antonaia, A
    Addonizio, ML
    Minarini, C
    Polichetti, T
    Vittori-Antisari, M
    ELECTROCHIMICA ACTA, 2001, 46 (13-14) : 2221 - 2227
  • [4] High performance electrochromic energy storage devices based on Mo-doped crystalline/amorphous WO3 core-shell structures
    Li, Wenli
    Zhang, Jie
    Zheng, Yuhua
    Cui, Yanbin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 235
  • [5] Rational construction of porous amorphous WO3 nanostructures with high electrochromic energy storage performance: Effect of temperature
    Shi, Yingdi
    Sun, Mingjun
    Chen, Weijie
    Zhang, Yong
    Shu, Xia
    Qin, Yongqiang
    Zhang, Xueru
    Shen, Hongjiang
    Wu, Yucheng
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2020, 549
  • [6] Crystalline WO3 nanowires array sheathed with sputtered amorphous shells for enhanced electrochromic performance
    Tang, Kai
    Zhang, Yong
    Shi, Yingdi
    Cui, Jiewu
    Shu, Xia
    Wang, Yan
    Qin, Yongqiang
    Liu, Jiaqin
    Tan, Hark Hoe
    Wu, Yucheng
    APPLIED SURFACE SCIENCE, 2019, 498
  • [7] MODULATED TRANSMITTANCE AND REFLECTANCE IN CRYSTALLINE ELECTROCHROMIC WO3 FILMS - THEORETICAL LIMITS
    SVENSSON, JSEM
    GRANQVIST, CG
    APPLIED PHYSICS LETTERS, 1984, 45 (08) : 828 - 830
  • [8] ELECTROCHROMIC COATINGS FOR SMART WINDOWS: CRYSTALLINE AND AMORPHOUS WO3 FILMS.
    Svensson, J.S.E.M.
    Granqvist, C.G.
    1600, (126): : 1 - 2
  • [9] Fabrication of nanoporous WO3 membranes and their electrochromic properties
    Nishio, K
    Iwata, K
    Masuda, H
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) : H21 - H23
  • [10] Electrochromic and energy storage bifunctional Gd-doped WO3/Ag/WO3 films
    Yin, Yi
    Gao, Tian
    Xu, Qingfan
    Cao, Gangqiang
    Chen, Qi
    Zhu, Haoyu
    Lan, Changyong
    Li, Chun
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (21) : 10973 - 10982