Nonselfadjoint perturbations of selfadjoint operators in two dimensions -: II.: Vanishing averages

被引:9
|
作者
Hitrik, M [1 ]
Sjöstrand, J
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Ecole Polytech, Ctr Math Laurent Schwartz, Palaiseau, France
[3] CNRS, UMR 7640, Palaiseau, France
基金
美国国家科学基金会;
关键词
averaging method; eigenvalue; Lagrangian torus; nonselfadjoint; odd perturbation; periodic flow;
D O I
10.1081/PDE-200064447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the second in a series of works devoted to small nonselfadjoint perturbations of selfadjoint semiclassical pseudodifferential operators in dimension 2. As in our previous work, we consider the case when the classical flow of the unperturbed part is periodic. Under the assumption that the flow average of the leading perturbation vanishes identically, we show how to obtain a complete asymptotic description of the individual eigenvalues in certain domains in the complex plane, provided that the strength of the perturbation epsilon is >> h(1/2) , or sometimes only >> h , and enjoys the upper bound epsilon = O(h(delta)), for some delta > 0.
引用
收藏
页码:1065 / 1106
页数:42
相关论文
共 36 条