Continuous Dependence in Front Propagation for Convective Reaction-Diffusion Models with Aggregative Movements

被引:4
|
作者
Malaguti, Luisa [2 ]
Marcelli, Cristina [1 ]
Matucci, Serena [3 ]
机构
[1] Polytech Univ Marche, Dept Math Sci, I-60131 Ancona, Italy
[2] Univ Modena & Reggio Emilia, Dept Engn Sci & Methods, I-42122 Reggio Emilia, Italy
[3] Univ Florence, Dept Elect & Telecommun, I-50139 Florence, Italy
关键词
EQUATIONS; SPEED; TERMS;
D O I
10.1155/2011/986738
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with a degenerate reaction-diffusion equation, including aggregative movements and convective terms. The model also incorporates a real parameter causing the change from a purely diffusive to a diffusive-aggregative and to a purely aggregative regime. Existence and qualitative properties of traveling wave solutions are investigated, and estimates of their threshold speeds are furnished. Further, the continuous dependence of the threshold wave speed and of the wave profiles on a real parameter is studied, both when the process maintains its diffusion-aggregation nature and when it switches from it to another regime.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] CONTINUOUS DEPENDENCE IN FRONT PROPAGATION OF CONVECTIVE REACTION-DIFFUSION EQUATIONS
    Malaguti, Luisa
    Marcelli, Cristina
    Matucci, Serena
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (04) : 1083 - 1098
  • [2] The effects of convective processes on front propagation in various reaction-diffusion equations
    Malaguti, L
    Marcelli, C
    Matucci, S
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 795 - 800
  • [3] Front propagation in reaction-diffusion systems with anomalous diffusion
    D. del-Castillo-Negrete
    Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 87 - 105
  • [4] Front propagation in reaction-diffusion systems with anomalous diffusion
    del-Castillo-Negrete, D.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (01): : 87 - 105
  • [5] FRONT PROPAGATION FOR REACTION-DIFFUSION EQUATIONS OF BISTABLE TYPE
    BARLES, G
    BRONSARD, L
    SOUGANIDIS, PE
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05): : 479 - 496
  • [6] Front propagation and blocking of reaction-diffusion systems in cylinders
    Guo, Hongjun
    Forbey, Jennifer
    Liu, Rongsong
    NONLINEARITY, 2021, 34 (10) : 6750 - 6772
  • [7] Front Propagation for Reaction-Diffusion Equations in Composite Structures
    Freidlin, M.
    Koralov, L.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (06) : 1663 - 1681
  • [8] Front propagation and segregation in a reaction-diffusion model with cross-diffusion
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, V
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 : 45 - 60
  • [9] PERSISTENCE AND PROPAGATION IN PERIODIC REACTION-DIFFUSION MODELS
    Hamel, Francois
    Roques, Lionel
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (03): : 217 - 228
  • [10] Propagation and reaction-diffusion models with free boundaries
    Du, Yihong
    BULLETIN OF MATHEMATICAL SCIENCES, 2022, 12 (01)