Three-dimensional (3D) aerogel materials assembled from simplex nanostructures have many advantages in the energy field, but the synthesis of alkali metal vanadate aerogels remains challenging. Herein, we demonstrate a general method for the preparation of a series of 3D alkali metal vanadate aerogels, including NaV3O8, NaV6O15, and K0.25V2O5. The aerogels with a large porous structure built from crosslinked ultra-long nanofibers can be prepared via the hydrothermal self-assembly route followed by a freeze-drying process. The resulting aerogels, e.g. NaV3O8, NaV6O15, and K0.25V2O5, exhibit excellent Li+ storage properties in terms of high specific capacity, good rate capability, and outstanding cyclic stability as cathodes for lithium batteries. Importantly, the NaV3O8 aerogel demonstrates an excellent long-life cyclic performance of 600 cycles at 1000 mA g(-1) with no capacity fading. To account for the mechanisms that affect the electrochemical properties, a systematic study is conducted. The superior performances may be due to the superior mechanical stability, good reversibility of lithium insertion/deinsertion and excellent interior structural stability. It is believed that our strategy could probably be extended to prepare other metal vanadate aerogel materials with great promise for various applications.